Learn R Programming

mopsocd (version 0.5.1)

mopsocd: MOPSOCD: Multi-objective Particle Swarm Optimization with Crowding Distance

Description

Multi-objective optimization involves maximizing or minimizing multiple interacting and/or conflicting objective functions subject to a set of contraints. MOPSOCD is a multi-objective optimization solver based on particle swarm optimization that uses crowding distance computation to ensure an even spread of non-dominated solutions.

Usage

mopsocd(fn, gn, varcnt, fncnt, lowerbound, upperbound, opt, popsize, maxgen, archivesize, verbosity, pMut, w, c1, c2)

Arguments

fn
Objective functions to be optimized
gn
Constraints (optional)
varcnt
Number of Parameters
fncnt
Number of Objectives
lowerbound
Parameter Lower Bound
upperbound
Parameter Upper Bound
opt
Optimization type (0: minimization; 1: maximization)
popsize
Population Size (default: 100)
maxgen
Number of Generations (default: 100)
archivesize
Maximum size of archive containing non-dominated points (default: 250)
verbosity
Verbosity Levels : 0,1,2,3 (default: 1)
pMut
Mutation Probability (default: 0.5)
w
Inertia Weight (default: 0.4)
c1
Acceleration Coefficient 1 (default: 1.0)
c2
Acceleration Coefficient 2 (default: 1.0)

Value

The returned value is a pareto object with the following fields:
numsols
Number of Solutions Found
paramvalues
Estimated Parameter Values
objfnvalues
Values of the Objectives

References

C. R. Raquel and P.C. Naval, "An Effective use of Crowding Distance in Multiobjective Particle Swarm Optimization", Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, D.C., June 25-29, 2005.

See Also

examples pareto