Last chance! 50% off unlimited learning
Sale ends in
mra(x, wf = "la8", J = 4, method = "modwt", boundary = "periodic")
method="dwt"
."la8"
, the Daubechies orthonormal
compactly supported wavelet of length $L=8$ least asymmetric
family."dwt"
or "modwt"
.boundary=="periodic"
the default, then the vector you
decompose is assumed to be periodic on its defined interval,
if boundary=="reflection"
, the vector beyond its boPercival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
dwt
, modwt
.## Easy check to see if it works...
x <- rnorm(32)
x.mra <- mra(x)
sum(x - apply(matrix(unlist(x.mra), nrow=32), 1, sum))^2
## Figure 4.19 in Gencay, Selcuk and Whitcher (2001)
data(ibm)
ibm.returns <- diff(log(ibm))
ibm.volatility <- abs(ibm.returns)
## Haar
ibmv.haar <- mra(ibm.volatility, "haar", 4, "dwt")
names(ibmv.haar) <- c("d1", "d2", "d3", "d4", "s4")
## LA(8)
ibmv.la8 <- mra(ibm.volatility, "la8", 4, "dwt")
names(ibmv.la8) <- c("d1", "d2", "d3", "d4", "s4")
## plot multiresolution analysis of IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.volatility, axes=FALSE, ylab="", main="(a)")
for(i in 1:5)
plot.ts(ibmv.haar[[i]], axes=FALSE, ylab=names(ibmv.haar)[i])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.volatility, axes=FALSE, ylab="", main="(b)")
for(i in 1:5)
plot.ts(ibmv.la8[[i]], axes=FALSE, ylab=names(ibmv.la8)[i])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
Run the code above in your browser using DataLab