file <- system.file("extdata/luades-thrombolytic.gemtc", package="gemtc")
network <- read.mtc.network(file)
model <- mtc.model(network, n.chain=2)
# Using BUGS or JAGS is preferred over YADAS,
# however YADAS does not require additional dependencies.
results <- mtc.run(model, "YADAS", n.iter=10000, n.adapt=2500, thin=10)
results <- mtc.run(model, "YADAS", n.iter=1000, n.adapt=250, thin=1)
summary(results)
## Iterations = 2501:12491
## Thinning interval = 10
## Number of chains = 2
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## d.ASPAC.AtPA -0.304820 0.18735 0.004189 0.016522
## d.ASPAC.SK -0.052619 0.12632 0.002825 0.009398
## d.ASPAC.tPA -0.082183 0.14001 0.003131 0.009953
## d.AtPA.Ret 0.056672 0.13778 0.003081 0.006673
## d.AtPA.SKtPA 0.182576 0.17255 0.003858 0.008097
## d.AtPA.Ten 0.003885 0.18986 0.004245 0.005752
## d.AtPA.UK -0.010540 0.25126 0.005618 0.020747
## sd.d 0.144836 0.09832 0.002198 0.009121
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## d.ASPAC.AtPA -0.80131 -0.37424 -0.2633908 -0.194203 -0.02693
## d.ASPAC.SK -0.36079 -0.10434 -0.0446136 0.021031 0.18066
## d.ASPAC.tPA -0.41917 -0.14239 -0.0607428 0.002906 0.13709
## d.AtPA.Ret -0.22937 -0.01136 0.0543854 0.132491 0.34123
## d.AtPA.SKtPA -0.12126 0.08231 0.1607389 0.257809 0.59299
## d.AtPA.Ten -0.36726 -0.08907 0.0006722 0.096692 0.38692
## d.AtPA.UK -0.50267 -0.17332 -0.0040873 0.165143 0.48285
## sd.d 0.02821 0.07322 0.1186668 0.192236 0.40152
plot(results) # Shows time-series and density plots of the samples
forest(results) # Shows a forest plot
Run the code above in your browser using DataLab