# NOT RUN {
# }
# NOT RUN {
data.file <- system.file("extdata", "example.seqz.txt.gz",
package = "sequenza")
# read all the chromosomes:
seqz.data <- read.seqz(data.file)
# Gather genome wide GC-stats from raw file:
gc.stats <- gc.sample.stats(data.file)
gc.normal.vect <- mean_gc(gc.stats$normal)
gc.tumor.vect <- mean_gc(gc.stats$tumor)
# Read only one chromosome:
seqz.data <- read.seqz(data.file, chr_name = "1")
# Correct the coverage of the loaded chromosome:
seqz.data$adjusted.ratio <- round((seqz.data$depth.tumor /
gc.tumor.vect[as.character(seqz.data$GC.percent)]) /
(seqz.data$depth.normal /
gc.normal.vect[as.character(seqz.data$GC.percent)]), 3)
# Select the heterozygous positions
seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom, ]
# Detect breakpoints
breaks <- find.breaks(seqz.het, gamma = 80, kmin = 10,
baf.thres = c(0, 0.5))
# use heterozygous and homozygous position to measure segment values
seg.s1 <- segment.breaks(seqz.data, breaks = breaks)
# filter out small ambiguous segments, and conveniently weight
# the segments by size:
seg.filtered <- seg.s1[(seg.s1$end.pos - seg.s1$start.pos) > 3e6, ]
weights.seg <- (seg.filtered$end.pos - seg.filtered$start.pos) / 1e6
# Set the average depth ratio to 1:
avg.depth.ratio <- 1
# run the BAF model fit
CP <- baf.model.fit(Bf = seg.filtered$Bf,
depth.ratio = seg.filtered$depth.ratio, weight.ratio = weights.seg,
weight.Bf = weights.seg, sd.ratio = seg.filtered$sd.ratio,
sd.Bf = seg.filtered$sd.BAF, avg.depth.ratio = avg.depth.ratio,
cellularity = seq(0.1, 1, 0.01), ploidy = seq(0.5, 3, 0.05))
confint <- get.ci(CP)
ploidy <- confint$max.ploidy
cellularity <- confint$max.cellularity
# }
Run the code above in your browser using DataLab