
mulmar(y, max.order=NULL, plot=FALSE)
y
.daic[[1]],...,daic[[d]]
are plotted, where $d$ is the dimension of the multivariate time series.rvar
)$+2$np
).arcoef[i,j,k]
shows the value of $i$-th row, $j$-th column, $k-$th order.matv
.
AIC is defined by
# Example 1
data(Powerplant)
z <- mulmar(Powerplant, max.order=10)
z$arcoef
# Example 2
ar <- array(0,dim=c(3,3,2))
ar[,,1] <- matrix(c(0.4, 0, 0.3,
0.2, -0.1, -0.5,
0.3, 0.1, 0),3,3,byrow=TRUE)
ar[,,2] <- matrix(c(0, -0.3, 0.5,
0.7, -0.4, 1,
0, -0.5, 0.3),3,3,byrow=TRUE)
x <- matrix(rnorm(200*3),200,3)
y <- mfilter(x,ar,"recursive")
z <- mulmar(y, max.order=10)
z$arcoef
Run the code above in your browser using DataLab