Learn R Programming

class (version 7.3-0)

multiedit: Multiedit for k-NN Classifier

Description

Multiedit for k-NN classifier

Usage

multiedit(x, class, k = 1, V = 3, I = 5, trace = TRUE)

Arguments

x
matrix of training set.
class
vector of classification of training set.
k
number of neighbours used in k-NN.
V
divide training set into V parts.
I
number of null passes before quitting.
trace
logical for statistics at each pass.

Value

  • index vector of cases to be retained.

References

P. A. Devijver and J. Kittler (1982) Pattern Recognition. A Statistical Approach. Prentice-Hall, p. 115.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

condense, reduce.nn

Examples

Run this code
tr <- sample(1:50, 25)
train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
cl <- factor(c(rep(1,25),rep(2,25), rep(3,25)), labels=c("s", "c", "v"))
table(cl, knn(train, test, cl, 3))
ind1 <- multiedit(train, cl, 3)
length(ind1)
table(cl, knn(train[ind1, , drop=FALSE], test, cl[ind1], 1))
ntrain <- train[ind1,]; ncl <- cl[ind1]
ind2 <- condense(ntrain, ncl)
length(ind2)
table(cl, knn(ntrain[ind2, , drop=FALSE], test, ncl[ind2], 1))

Run the code above in your browser using DataLab