# Example 1: fit a multinomial logit model to Edgar Anderson's iris data
data(iris)
fit = vglm(Species ~ ., multinomial, iris)
coef(fit, matrix = TRUE)
# Example 2a: a simple example 
ycounts = t(rmultinom(10, size = 20, prob = c(0.1, 0.2, 0.8))) # Counts
fit = vglm(ycounts ~ 1, multinomial)
head(fitted(fit))   # Proportions
fit@prior.weights # Not recommended for extraction of prior weights
weights(fit, type = "prior", matrix = FALSE) # The better method
fit@y   # Sample proportions
constraints(fit)   # Constraint matrices
# Example 2b: Different reference level used as the baseline 
fit2 = vglm(ycounts ~ 1, multinomial(refLevel = 2))
coef(fit2, matrix = TRUE)
coef(fit , matrix = TRUE) # Easy to reconcile this output with fit2
# Example 3: The response is a factor.
nn = 10
dframe3 = data.frame(yfactor = gl(3, nn, labels=c("Control","Trt1","Trt2")),
                     x = runif(3 * nn))
myrefLevel = with(dframe3, yfactor[12])
fit3a = vglm(yfactor ~ x, multinomial(refLevel = myrefLevel), dframe3)
fit3b = vglm(yfactor ~ x, multinomial(refLevel = 2), dframe3)
coef(fit3a, matrix = TRUE)  # "Treatment1" is the reference level
coef(fit3b, matrix = TRUE)  # "Treatment1" is the reference level
margeff(fit3b)
# Example 4: Fit a rank-1 stereotype model 
data(car.all)
fit4 = rrvglm(Country ~ Width + Height + HP, multinomial, car.all)
coef(fit4)   # Contains the C matrix
constraints(fit4)$HP       # The A matrix 
coef(fit4, matrix = TRUE)  # The B matrix
Coef(fit4)@C               # The C matrix 
ccoef(fit4)                # Better to get the C matrix this way
Coef(fit4)@A               # The A matrix 
svd(coef(fit4, matrix = TRUE)[-1, ])$d    # This has rank 1; = C %*% t(A) 
# Example 5: The use of the xij argument (aka conditional logit model)
set.seed(111)
nn = 100  # Number of people who travel to work
M = 3  # There are M+1 models of transport to go to work
ycounts = matrix(0, nn, M+1)
ycounts[cbind(1:nn, sample(x = M+1, size = nn, replace = TRUE))] = 1
dimnames(ycounts) = list(NULL, c("bus","train","car","walk"))
gotowork = data.frame(cost.bus  = runif(nn), time.bus  = runif(nn), 
                      cost.train= runif(nn), time.train= runif(nn),
                      cost.car  = runif(nn), time.car  = runif(nn),
                      cost.walk = runif(nn), time.walk = runif(nn))
gotowork = round(gotowork, dig = 2) # For convenience
gotowork = transform(gotowork,
                     Cost.bus   = cost.bus   - cost.walk,
                     Cost.car   = cost.car   - cost.walk,
                     Cost.train = cost.train - cost.walk,
                     Cost       = cost.train - cost.walk, # for labelling
                     Time.bus   = time.bus   - time.walk,
                     Time.car   = time.car   - time.walk,
                     Time.train = time.train - time.walk,
                     Time       = time.train - time.walk) # for labelling
fit = vglm(ycounts ~ Cost + Time,
           multinomial(parall = TRUE ~ Cost + Time - 1),
           xij = list(Cost ~ Cost.bus + Cost.train + Cost.car,
                      Time ~ Time.bus + Time.train + Time.car),
           form2 =  ~ Cost + Cost.bus + Cost.train + Cost.car +
                      Time + Time.bus + Time.train + Time.car,
           data=gotowork, trace = TRUE)
head(model.matrix(fit, type = "lm"))   # LM model matrix
head(model.matrix(fit, type = "vlm"))  # Big VLM model matrix
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
summary(fit)
max(abs(predict(fit) - predict(fit, new = gotowork))) # Should be 0Run the code above in your browser using DataLab