# NOT RUN {
## Test case : the Winter Wheat Dynamic Models (WWDM)
# input factors design
data(biomasseX)
# input climate variable
data(Climat)
# output variables (precalculated to speed up the example)
data(biomasseY)
# to do dynsi process
# argument reduction=NULL
resD <- multisensi(design=biomasseX, model=biomasseY, reduction=NULL,
dimension=NULL, analysis=analysis.anoasg,
analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resD)
# to do gsi process
#------------
# with dimension reduction by PCA
# argument reduction=basis.ACP
resG1 <- multisensi(design=biomasseX, model=biomasseY, reduction=basis.ACP,
dimension=0.95, analysis=analysis.anoasg,
analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resG1)
plot(x=resG1, beside=FALSE)
#------------
# with dimension reduction by o-splines basis
# arguments reduction=basis.osplines
# and basis.args=list(knots= ... , mdegree= ... )
resG2 <- multisensi(design=biomasseX, model=biomasseY, reduction=basis.osplines,
dimension=NULL, center=FALSE, scale=FALSE,
basis.args=list(knots=11, mdegree=3), analysis=analysis.anoasg,
analysis.args=list(formula=2,keep.outputs = FALSE))
summary(resG2)
#------------
library(sensitivity) # to use fast99
# with dimension reduction by o-splines basis
# and sensitivity analysis with sensitivity:fast99
resG3 <- multisensi(design=fast99, model=biomasse,
analysis=analysis.sensitivity,
design.args=list(factors = names(biomasseX), n = 100,
q = "qunif", q.arg = list(list(min = 0.9, max = 2.8),
list(min = 0.9, max = 0.99), list(min = 0.6, max = 0.8),
list(min = 3, max = 12), list(min = 0.0035, max = 0.01),
list(min = 0.0011, max = 0.0025),
list(min = 700, max = 1100))), climdata=Climat,
reduction=basis.osplines,
basis.args=list(knots=7, mdegree=3),
center=FALSE,scale=FALSE,dimension=NULL)
summary(resG3)
# }
Run the code above in your browser using DataLab