Learn R Programming

BaseSet (version 0.0.14)

mutate.TidySet: Mutate

Description

Use mutate to alter the TidySet object. You can use activate with mutate or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

# S3 method for TidySet
mutate(.data, ...)

mutate_set(.data, ...)

mutate_element(.data, ...)

mutate_relation(.data, ...)

Arguments

.data

The TidySet object.

...

The logical predicates in terms of the variables of the sets.

Value

A TidySet object

See Also

mutate and activate

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

Run this code
# NOT RUN {
relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a, Type = c(rep("Gene", 4), rep("lncRNA", 2)))
a
b <- mutate_relation(a, Type = sample(c("PPI", "PF", "MP"), 12,
    replace = TRUE
))
# }

Run the code above in your browser using DataLab