mvmeta.fit
.
mvmeta.control(optim=list(), showiter=FALSE, maxiter=100, initPsi=NULL, Psifix=NULL,Psicor=0, Scor=0, inputna=FALSE, inputvar=10^4, igls.iter=10, hessian=FALSE, vc.adj=TRUE,reltol=sqrt(.Machine$double.eps), set.negeigen=sqrt(.Machine$double.eps))
TRUE
, the progress of iterative optimization is shown.NULL
(the default, and recommended), the starting value is created internally through an iterative generalized least square algorithm.bscov="fixed"
or bscov="prop"
in mvmeta
, and, if not provided, it set internally to a 0 or identity matrix, respectively.inputcov
).inputna
.inputna
.iter.igls
.TRUE
, the Hessian matrix of the parameters estimated in the optimization process is computed and returned. Only applicable to likelihood-based estimation methods. For details, see the info provided in the help pages of the optimizations algorithms
and (co)variance structure
.TRUE
, an adjustement to the way the marginal variance part is computed in the variance components estimator is applied. See mvmeta.vc
.reltol * (abs(val) + reltol)
at a step.mvmeta
is by default passed to mvmeta.fit
, which uses its elements as arguments of mvmeta.control
.Many arguments refer to specific fitting procedures. Refer to the help page of the related estimator for details.
The function automatically sets non-default values for some control arguments for optim
, unless explicitly set in the list passed to it. Specifically, the function selects fnscale=-1
, maxit=maxiter
and reltol=reltol
, where the latter two are specified by other arguments of this function.
The function is expected to be extended and/or modified at every release of the package mvmeta.
mvmeta
. See also glm.control
. See the help pages of the related fitting functions for details on each parameter. See mvmeta-package
for an overview of this modelling framework.
# PRINT THE ITERATIONS (SEE ?optim) AND CHANGE THE DEFAULT FOR STARTING VALUES
model <- mvmeta(cbind(PD,AL)~pubyear,S=berkey98[5:7],data=berkey98,
control=list(showiter=TRUE,igls.iter=20))
# INPUT THE CORRELATION
model <- mvmeta(cbind(y1,y2),S=cbind(V1,V2),data=p53,control=list(Scor=0.5))
Run the code above in your browser using DataLab