Learn R Programming

OpenMx (version 2.5.2)

mxAlgebra: Create MxAlgebra Object

Description

This function creates a new MxAlgebra object.

Usage

mxAlgebra(expression, name = NA, dimnames = NA, ..., fixed = FALSE,
          joinKey=as.character(NA), joinModel=as.character(NA))

Arguments

expression
An R expression of OpenMx-supported matrix operators and matrix functions.
name
An optional character string indicating the name of the object.
dimnames
list. The dimnames attribute for the algebra: a list of length 2 giving the row and column names respectively. An empty list is treated as NULL, and a list of length one as row names. The list can be named, and the list names will be used as name
...
Not used. Forces argument fixed to be specified by name.
fixed
If TRUE, this algebra will not be recomputed automatically when things it depends on change. mxComputeOnce can be used to force it to recompute.
joinKey
The name of the column in current model's raw data that is used as a foreign key to match against the primary key in joinModel's raw data.
joinModel
The name of the model that this matrix joins against.

Value

Details

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMatrix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with all referenced MxMatrix objects and the mxFitFunctionAlgebra function. The mxFitFunctionAlgebra function must reference by name the MxAlgebra object to be evaluated.

Note that, if the result for an MxAlgebra depends upon one or more "definition variables" (see mxMatrix()), then the value returned after the call to mxRun() will be computed using the values of those definition variables in the first (i.e., first before any automated sorting is done) row of the raw dataset.

The following operators and functions are supported in mxAlgebra:

Operators

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Functions

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

There are also several multiargument functions usable in MxAlgebras, which apply themselves elementwise to the matrix provided as their first argument. These functions have slightly different usage from their Rcounterparts. Their result is always a matrix with the same dimensions as that provided for their first argument. Values must be provided for ALL arguments of these functions, in order. Provide zeroes as logical values of FALSE, and non-zero numerical values as logical values of TRUE. For most of these functions, OpenMx cycles over values of arguments other than the first, by column (i.e., in column-major order), to the length of the first argument. Notable exceptions are the log, log.p, and lower.tail arguments to probability-distribution-related functions, for which only the [1,1] element is used. It is recommended that all arguments after the first be either (1) scalars, or (2) matrices with the same dimensions as the first argument. ccl{ Function Arguments Notes dbeta x,shape1,shape2,ncp,log The algorithm for the non-central beta distribution is used for non-negative values of ncp. Negative ncp values are ignored, and the algorithm for the central beta distribution is used. pbeta x,shape1,shape2,ncp,lower.tail,log.p Values of ncp are handled as with dbeta(). besselJ & besselY x,nu besselI & besselK x,nu,expon.scaled Note that OpenMx does cycle over the elements of expon.scaled. }

References

The OpenMx User's guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxFitFunctionAlgebra for an objective function which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and mxMatrix for objects which may be entered in the expression argument and the function that creates them. More information about the OpenMx package may be found here.

Examples

Run this code
A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")

# Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

# Compute A + B
C <- mxAlgebra(A + B, name = "C")

# Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

# Make a model and evaluate the mxAlgebra object 'D'
A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel(model="AlgebraExample", A, B, C, D )
fit   <- mxRun(model)
mxEval(D, fit)


# Numbers in mxAlgebras are upgraded to 1x1 matrices
# Example of Kronecker powering (%^%) and multiplication (%*%)
A  <- mxMatrix(type="Full", nrow=3, ncol=3, value=c(1:9), name="A")
m1 <- mxModel(model="kron", A, mxAlgebra(A %^% 2, name="KroneckerPower"))
mxRun(m1)$KroneckerPower

# Running kron 
# mxAlgebra 'KroneckerPower' 
# $formula:  A %^% 2 
# $result:
#      [,1] [,2] [,3]
# [1,]    1   16   49
# [2,]    4   25   64
# [3,]    9   36   81

Run the code above in your browser using DataLab