mxComputeEM(expectation, predict, mstep, observedFit = "fitfunction", ...,
maxIter = 500L, tolerance = 1e-09, verbose = 0L,
freeSet = NA_character_, accel = "varadhan2008",
information = NA_character_, infoArgs = list())
The EM algorithm does not produce a parameter covariance matrix for standard errors. S-EM, an implementation of Meng & Rubin (1991), is included.
Ramsay (1975) was recommended in Bock, Gibbons, & Muraki (1988).
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.
Meng, X.-L. & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86 (416), 899-909.
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40 (3), 337-360.
Varadhan, R. & Roland, C. (2008). Simple and globally convergent methods for accelerating the convergence of any EM algorithm. Scandinavian Journal of Statistics, 35, 335-353.