mxComputeOnce(from, what = "nothing", how = NULL, ..., freeSet = NA_character_, verbose = 0L, .is.bestfit = FALSE)
how
parameter to specify which approximation to use
(one of "default", "hessian", "sandwich", "bread", and "meat").
data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",
mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeOnce('fitfunction', 'fit'))
factorModelFit <- mxRun(factorModel)
factorModelFit$output$fit # 972.15
Run the code above in your browser using DataLab