anovaFilter(x, y, cut = 0.05)
gamFilter(x, y, cut = 0.05) caretSBF
lmSBF
rfSBF
treebagSBF
ldaSBF
nbSBF
functions argument of sbfControl. See sbfControl for details on how these functions should be defined.
anovaFilter and gamFilter are two examples of univariate filtering functions. anovaFilter fits a simple linear model between a single feature and the outcome, then the p-value for the whole model F-test is generated. If the p-values is greater than 0.05, the feature is retained for the model. gamFilter fits a generalized additive model between a single predictor and the outcome using a smoothing spline basis function. A p-value is generated using the whole model test from summary.gam and p-values greater than 0.05 indicate that a predictor will be excluded.
If a particular model fails for lm or gam, the predictor is not used in the model.
sbfControl, sbf, summary.gam