
The ncdfCF
package provides an easy to use interface to netCDF
resources in R, either in local files or remotely on a THREDDS server.
It is built on the RNetCDF
package which, like package ncdf4
,
provides a basic interface to the netcdf
library, but which lacks an
intuitive user interface. Package ncdfCF
provides a high-level
interface using functions and methods that are familiar to the R user.
It reads the structural metadata and also the attributes upon opening
the resource. In the process, the ncdfCF
package also applies CF
Metadata Conventions to interpret the data. This currently applies to:
CFtime
package these offsets can be turned into
intelligible dates and times, for all defined calendars.dimnames
for the axis.
(Note that this also applies to generic numeric axes with labels
defined.)formula_terms
attribute.coordinates
attribute of axes, are read, including when multiple sets of labels
are defined for a single axis. Users can select which set of labels to
make active for display, selection and processing.Opening and inspecting the contents of a netCDF resource is very straightforward:
library(ncdfCF)
# Get any netCDF file
fn <- system.file("extdata", "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
# Open the file, all metadata is read
(ds <- open_ncdf(fn))
#> <Dataset> ERA5land_Rwanda_20160101
#> Resource : /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/ncdfCF/extdata/ERA5land_Rwanda_20160101.nc
#> Format : offset64
#> Collection : Generic netCDF data
#> Conventions: CF-1.6
#> Keep open : FALSE
#>
#> Variables:
#> name long_name units data_type axes
#> t2m 2 metre temperature K NC_SHORT longitude, latitude, time
#> pev Potential evaporation m NC_SHORT longitude, latitude, time
#> tp Total precipitation m NC_SHORT longitude, latitude, time
#>
#> Attributes:
#> name type length value
#> CDI NC_CHAR 64 Climate Data Interface version 2.4.1 (https://m...
#> Conventions NC_CHAR 6 CF-1.6
#> history NC_CHAR 482 Tue May 28 18:39:12 2024: cdo seldate,2016-01-0...
#> CDO NC_CHAR 64 Climate Data Operators version 2.4.1 (https://m...
# ...or very brief details
ds$var_names
#> [1] "t2m" "pev" "tp"
ds$axis_names
#> [1] "time" "longitude" "latitude"
# Variables and axes can be accessed through standard list-type extraction syntax
(t2m <- ds[["t2m"]])
#> <Variable> t2m
#> Long name: 2 metre temperature
#>
#> Axes:
#> axis name length unlim values
#> X longitude 31 [28 ... 31]
#> Y latitude 21 [-1 ... -3]
#> T time 24 U [2016-01-01T00:00:00 ... 2016-01-01T23:00:00]
#> unit
#> degrees_east
#> degrees_north
#> hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
ds[["longitude"]]
#> <Longitude axis> [1] longitude
#> Length : 31
#> Axis : X
#> Coordinates: 28, 28.1, 28.2 ... 30.8, 30.9, 31 (degrees_east)
#> Bounds : (not set)
#>
#> Attributes:
#> name type length value
#> standard_name NC_CHAR 9 longitude
#> long_name NC_CHAR 9 longitude
#> units NC_CHAR 12 degrees_east
#> axis NC_CHAR 1 X
#> actual_range NC_FLOAT 2 28, 31
# Regular base R operations simplify life further
dimnames(ds[["pev"]]) # A variable: list of axis names
#> [1] "longitude" "latitude" "time"
dimnames(ds[["longitude"]]) # An axis: vector of axis coordinates
#> [1] 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 29.0 29.1 29.2 29.3 29.4
#> [16] 29.5 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9
#> [31] 31.0
# Access attributes
ds[["pev"]]$attribute("long_name")
#> [1] "Potential evaporation"
If you just want to inspect what data is included in the netCDF
resource, use the peek_ncdf()
function:
peek_ncdf(fn)
#> $uri
#> [1] "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/ncdfCF/extdata/ERA5land_Rwanda_20160101.nc"
#>
#> $type
#> [1] "Generic netCDF data"
#>
#> $variables
#> id name long_name standard_name units axes
#> t2m 3 t2m 2 metre temperature NA K longitude, latitude, time
#> pev 4 pev Potential evaporation NA m longitude, latitude, time
#> tp 5 tp Total precipitation NA m longitude, latitude, time
#>
#> $axes
#> class id axis name long_name standard_name
#> time CFAxisTime 0 T time time time
#> longitude CFAxisLongitude 1 X longitude longitude longitude
#> latitude CFAxisLatitude 2 Y latitude latitude latitude
#> units length unlimited
#> time hours since 1900-01-01 00:00:00.0 24 TRUE
#> longitude degrees_east 31 FALSE
#> latitude degrees_north 21 FALSE
#> values has_bounds
#> time [2016-01-01T00:00:00 ... 2016-01-01T23:00:00] FALSE
#> longitude [28 ... 31] FALSE
#> latitude [-1 ... -3] FALSE
#> coordinate_sets
#> time 1
#> longitude 1
#> latitude 1
#>
#> $attributes
#> id name type length
#> 1 0 CDI NC_CHAR 64
#> 2 1 Conventions NC_CHAR 6
#> 3 2 history NC_CHAR 482
#> 4 3 CDO NC_CHAR 64
#> value
#> 1 Climate Data Interface version 2.4.1 (https://mpimet.mpg.de/cdi)
#> 2 CF-1.6
#> 3 Tue May 28 18:39:12 2024: cdo seldate,2016-01-01,2016-01-01 /Users/patrickvanlaake/CC/ERA5land/Rwanda/ERA5land_Rwanda_t2m-pev-tp_2016-2018.nc ERA5land_Rwanda_20160101.nc\n2021-12-22 07:00:24 GMT by grib_to_netcdf-2.23.0: /opt/ecmwf/mars-client/bin/grib_to_netcdf -S param -o /cache/data5/adaptor.mars.internal-1640155821.967082-25565-12-0b19757d-da4e-4ea4-b8aa-d08ec89caf2c.nc /cache/tmp/0b19757d-da4e-4ea4-b8aa-d08ec89caf2c-adaptor.mars.internal-1640142203.3196251-25565-10-tmp.grib
#> 4 Climate Data Operators version 2.4.1 (https://mpimet.mpg.de/cdo)
There are four ways to read data for a data variable from the resource:
data():
The data()
method returns all data of a variable,
including its metadata, in a CFArray
instance.[]
: The usual R array operator gives you access to the raw,
non-interpreted data in the netCDF resource. This uses index values
into the dimensions and requires you to know the order in which the
dimensions are specified for the variable. With a bit of tinkering and
some helper functions in ncdfCF
this is still very easy to do.subset()
: The subset()
method lets you specify what you want
to extract from each dimension in real-world coordinates and
timestamps, in whichever order. This can also rectify non-Cartesian
grids to regular longitude-latitude grids.profile()
: Extract “profiles” from the data variable. This can
take different forms, such as a temporal or depth profile for a single
location, but it could also be a zonal field (such as a transect in
latitude - atmospheric depth for a given longitude) or some other
profile in the physical space of the data variable.# Extract a timeseries for a specific location
ts <- t2m[5, 4, ]
str(ts)
#> num [1, 1, 1:24] 293 292 292 291 291 ...
#> - attr(*, "dimnames")=List of 3
#> ..$ longitude: chr "28.4"
#> ..$ latitude : chr "-1.3"
#> ..$ time : chr [1:24] "2016-01-01T00:00:00" "2016-01-01T01:00:00" "2016-01-01T02:00:00" "2016-01-01T03:00:00" ...
#> - attr(*, "axis")= Named chr [1:3] "X" "Y" "T"
#> ..- attr(*, "names")= chr [1:3] "longitude" "latitude" "time"
#> - attr(*, "time")=List of 1
#> ..$ time:CFTime with origin [hours since 1900-01-01 00:00:00.0] using calendar [standard] having 24 offset values
# Extract the full spatial extent for one time step
ts <- t2m[, , 12]
str(ts)
#> num [1:31, 1:21, 1] 300 300 300 300 300 ...
#> - attr(*, "dimnames")=List of 3
#> ..$ longitude: chr [1:31] "28" "28.1" "28.200001" "28.299999" ...
#> ..$ latitude : chr [1:21] "-1" "-1.1" "-1.2" "-1.3" ...
#> ..$ time : chr "2016-01-01T11:00:00"
#> - attr(*, "axis")= Named chr [1:3] "X" "Y" "T"
#> ..- attr(*, "names")= chr [1:3] "longitude" "latitude" "time"
#> - attr(*, "time")=List of 1
#> ..$ time:CFTime with origin [hours since 1900-01-01 00:00:00.0] using calendar [standard] having 1 offset values
Note that the results contain degenerate dimensions (of length 1). This
by design when using basic []
data access because it allows attributes
to be attached in a consistent manner. When using the subset()
method,
the data is returned as an instance of CFArray
, including axes and
attributes:
# Extract a specific region, full time dimension
(ts <- t2m$subset(list(X = 29:30, Y = -1:-2)))
#> <Data array> t2m
#> Long name: 2 metre temperature
#>
#> Values: [283.0182 ... 302.0447] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length unlim values
#> X longitude 31 [28 ... 31]
#> Y latitude 21 [-1 ... -3]
#> T time 24 U [2016-01-01T00:00:00 ... 2016-01-01T23:00:00]
#> unit
#> degrees_east
#> degrees_north
#> hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 283.018168, 302.04472
# Extract specific time slices for a specific region
# Note that the dimensions are specified out of order and using alternative
# specifications: only the extreme values are used.
(ts <- t2m$subset(list(T = c("2016-01-01 09:00", "2016-01-01 15:00"),
X = c(29.6, 28.8),
Y = seq(-2, -1, by = 0.05))))
#> <Data array> t2m
#> Long name: 2 metre temperature
#>
#> Values: [283.0182 ... 302.0447] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length unlim values
#> X longitude 31 [28 ... 31]
#> Y latitude 21 [-1 ... -3]
#> T time 24 U [2016-01-01T00:00:00 ... 2016-01-01T23:00:00]
#> unit
#> degrees_east
#> degrees_north
#> hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 283.018168, 302.04472
The latter two methods will read only as much data from the netCDF resource as is requested.
With the summarise()
method, available for both CFVariable
and
CFArray
, you can apply a function over the data to generate summaries.
You could, for instance, summarise daily data to monthly means. These
methods use the specific calendar of the “time” axis. The return value
is a new CFArray
object.
# Summarising hourly temperature data to calculate the daily maximum temperature
t2m$summarise("tmax", max, "day")
#> <Data array> tmax
#> Long name: 2 metre temperature
#>
#> Values: [290.0364 ... 302.0447] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length values unit
#> X longitude 31 [28 ... 31] degrees_east
#> Y latitude 21 [-1 ... -3] degrees_north
#> T time 1 [2016-01-01T12:00:00] hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 290.036358, 302.04472
A function may also return a vector of multiple values, in which case a
list is returned with a new CFArray
object for each return value of
the function. This allows you to calculate multiple results with a
single call. You could write your own function to tailor the
calculations to your needs. Rather than just calculating the daily
maximum, you could get the daily maximum, minimum and diurnal range in
one go:
# Function to calculate multiple daily stats
# It is good practice to include a `na.rm` argument in all your functions
daily_stats <- function(x, na.rm = TRUE) {
# x is the vector of values for one day
minmax <- range(x, na.rm = na.rm)
diurnal <- minmax[2L] - minmax[1L]
c(minmax, diurnal)
}
# Call summarise() with your own function
# The `name` argument should have as many names as the function returns results
(stats <- t2m$summarise(c("tmin", "tmax", "diurnal_range"), daily_stats, "day"))
#> $tmin
#> <Data array> tmin
#> Long name: 2 metre temperature
#>
#> Values: [283.0182 ... 293.8659] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length values unit
#> X longitude 31 [28 ... 31] degrees_east
#> Y latitude 21 [-1 ... -3] degrees_north
#> T time 1 [2016-01-01T12:00:00] hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 283.018168, 293.865857
#>
#> $tmax
#> <Data array> tmax
#> Long name: 2 metre temperature
#>
#> Values: [290.0364 ... 302.0447] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length values unit
#> X longitude 31 [28 ... 31] degrees_east
#> Y latitude 21 [-1 ... -3] degrees_north
#> T time 1 [2016-01-01T12:00:00] hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 290.036358, 302.04472
#>
#> $diurnal_range
#> <Data array> diurnal_range
#> Long name: 2 metre temperature
#>
#> Values: [1.819982 ... 11.27369] K
#> NA: 0 (0.0%)
#>
#> Axes:
#> axis name length values unit
#> X longitude 31 [28 ... 31] degrees_east
#> Y latitude 21 [-1 ... -3] degrees_north
#> T time 1 [2016-01-01T12:00:00] hours since 1900-01-01 00:00:00.0
#>
#> Attributes:
#> name type length value
#> long_name NC_CHAR 19 2 metre temperature
#> units NC_CHAR 1 K
#> actual_range NC_DOUBLE 2 1.819982, 11.27369
Note that you may have to update some attributes after calling
summarise()
. You can use the set_attribute()
method on the CFArray
objects to do that.
A CFData
object can be exported to a data.table
or to a
terra::SpatRaster
(3D) or terra::SpatRasterDataset
(4D) for further
processing. Obviously, these packages need to be installed to utilise
these methods.
# install.packages("data.table")
library(data.table)
head(dt <- ts$data.table())
#> longitude latitude time t2m
#> <num> <num> <char> <num>
#> 1: 28.0 -1 2016-01-01T00:00:00 293.8875
#> 2: 28.1 -1 2016-01-01T00:00:00 294.4015
#> 3: 28.2 -1 2016-01-01T00:00:00 294.4972
#> 4: 28.3 -1 2016-01-01T00:00:00 293.9426
#> 5: 28.4 -1 2016-01-01T00:00:00 293.6339
#> 6: 28.5 -1 2016-01-01T00:00:00 293.0206
#install.packages("terra")
suppressMessages(library(terra))
(r <- stats[["diurnal_range"]]$terra())
#> class : SpatRaster
#> dimensions : 21, 31, 1 (nrow, ncol, nlyr)
#> resolution : 0.1, 0.1 (x, y)
#> extent : 27.95, 31.05, -3.05, -0.95 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> source(s) : memory
#> name : 2016-01-01T12:00:00
#> min value : 1.819982
#> max value : 11.273690
terra::plot(r)
A CFData
object can also be written back to a netCDF file. The object
will have all its relevant attributes and properties written together
with the actual data: axes, bounds, attributes, CRS.
# Save a CFData instance to a netCDF file on disk
stats[["diurnal_range"]]$save("~/path/file.nc")
Discrete Sampling Geometries (DSG) map almost directly to the venerable
data.frame
in R (with several exceptions). In that sense, they are
rather distinct from array-based data sets. At the moment there is no
specific code for DSG, but the simplest layouts can currently already be
read (without any warranty). Various methods, such as
CFVariable::subset()
or CFData::array()
will fail miserably, and you
are well-advised to try no more than the empty array indexing operator
CFVariable::[]
which will yield the full data variable with column and
row names set as an array, of CFVariable::data()
to get the whole data
variable as a CFData
object for further processing. You can identify a
DSG data set by the featureType
attribute of the CFDataset
.
More comprehensive support for DSG is in the development plan.
Package ncdfCF
is in the early phases of development. It supports
reading of all data objects from netCDF resources in “classic” and
“netcdf4” formats; and can write single data arrays back to a netCDF
file. From the CF Metadata Conventions it supports identification of
axes, interpretation of the “time” axis, name resolution when using
groups, reading of “bounds” information, auxiliary coordinate variables,
labels, cell measures, attributes and grid mapping information.
Development plans for the near future focus on supporting the below features:
CFArray
instances can already be
written to file).Package ncdfCF
is still in the early phases of development. While
extensively tested on multiple well-structured datasets, errors may
still occur, particularly in datasets that do not adhere to the CF
Metadata Conventions. The API may still change and although care is
taken not to make breaking changes, sometimes this is unavoidable.
Installation from CRAN of the latest release:
install.packages("ncdfCF")
You can install the development version of ncdfCF
from
GitHub with:
# install.packages("devtools")
devtools::install_github("R-CF/ncdfCF")
install.packages('ncdfCF')