cheapr
In cheapr, ‘cheap’ means fast and memory-efficient, and that’s exactly the philosophy that cheapr aims to follow.
Installation
You can install cheapr like so:
install.packages("cheapr")
or you can install the development version of cheapr:
remotes::install_github("NicChr/cheapr")
Some common operations that cheapr can do much faster and more efficiently include:
Counting, finding, removing and replacing
NA
and scalar valuesCreating factors
Creating multiple sequences in a vectorised way
Sub-setting vectors and data frames efficiently
Safe, flexible and fast greatest common divisor and lowest common multiple
Lags/leads
Lightweight
integer64
supportIn-memory Math (no copies, vectors updated by reference)
Summary statistics of data frame variables
Binning of continuous data
Let’s first load the required packages
library(cheapr)
library(bench)
Scalars and NA
Because R mostly uses vectors and vectorised operations, this means that there are few scalar-optimised operations.
cheapr provides tools to efficiently count, find, replace and remove scalars.
# Setup data with NA values
set.seed(42)
x <- sample(1:5, 30, TRUE)
x <- na_insert(x, n = 7)
cheapr_table(x, order = TRUE) # Fast table()
#> 1 2 3 4 5 <NA>
#> 6 6 3 4 4 7
NA
functions
na_count(x)
#> [1] 7
na_rm(x)
#> [1] 1 5 1 2 4 2 1 4 5 4 2 3 1 1 3 4 5 5 2 3 2 1 2
na_find(x)
#> [1] 4 8 11 15 22 24 26
na_replace(x, -99)
#> [1] 1 5 1 -99 2 4 2 -99 1 4 -99 5 4 2 -99 3 1 1 3
#> [20] 4 5 -99 5 -99 2 -99 3 2 1 2
Scalar functions
val_count(x, 3)
#> [1] 3
val_rm(x, 3)
#> [1] 1 5 1 NA 2 4 2 NA 1 4 NA 5 4 2 NA 1 1 4 5 NA 5 NA 2 NA 2
#> [26] 1 2
val_find(x, 3)
#> [1] 16 19 27
val_replace(x, 3, 99)
#> [1] 1 5 1 NA 2 4 2 NA 1 4 NA 5 4 2 NA 99 1 1 99 4 5 NA 5 NA 2
#> [26] NA 99 2 1 2
Scalar based case-match
val_match(
x,
1 ~ "one",
2 ~ "two",
3 ~ "three",
.default = ">3"
)
#> [1] "one" ">3" "one" ">3" "two" ">3" "two" ">3" "one"
#> [10] ">3" ">3" ">3" ">3" "two" ">3" "three" "one" "one"
#> [19] "three" ">3" ">3" ">3" ">3" ">3" "two" ">3" "three"
#> [28] "two" "one" "two"
Efficient NA counts by row/col
m <- matrix(na_insert(rnorm(10^6), prop = 1/4), ncol = 10^3)
# Number of NA values by row
mark(row_na_counts(m),
rowSums(is.na(m)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 row_na_counts(m) 457.1µs 479.4µs 1952. 9.15KB 0
#> 2 rowSums(is.na(m)) 2.65ms 2.94ms 316. 3.85MB 31.1
# Number of NA values by col
mark(col_na_counts(m),
colSums(is.na(m)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 col_na_counts(m) 1.36ms 1.48ms 645. 9.14KB 0
#> 2 colSums(is.na(m)) 1.25ms 1.44ms 621. 3.82MB 60.3
is_na
is a multi-threaded alternative to is.na
x <- rnorm(10^6) |>
na_insert(10^5)
options(cheapr.cores = 4)
mark(is.na(x), is_na(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 is.na(x) 551µs 621µs 1436. 3.81MB 235.
#> 2 is_na(x) 153µs 173µs 4966. 3.82MB 501.
options(cheapr.cores = 1)
mark(is.na(x), is_na(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 is.na(x) 549µs 616µs 1512. 3.81MB 191.
#> 2 is_na(x) 360µs 429µs 2210. 3.81MB 264.
### posixlt method is much faster
hours <- as.POSIXlt(seq.int(0, length.out = 10^6, by = 3600),
tz = "UTC") |>
na_insert(10^5)
mark(is.na(hours), is_na(hours))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 is.na(hours) 1.03s 1.03s 0.970 61.05MB 0.970
#> 2 is_na(hours) 3.79ms 3.97ms 230. 7.64MB 23.9
It differs in 2 regards:
- List elements are regarded as
NA
when either that element is anNA
value or it is a list containing onlyNA
values. - For data frames,
is_na
returns a logical vector whereTRUE
defines an empty row of onlyNA
values.
# List example
is.na(list(NA, list(NA, NA), 10))
#> [1] TRUE FALSE FALSE
is_na(list(NA, list(NA, NA), 10))
#> [1] TRUE TRUE FALSE
# Data frame example
df <- new_df(x = c(1, NA, 3),
y = c(NA, NA, NA))
df
#> x y
#> 1 1 NA
#> 2 NA NA
#> 3 3 NA
is_na(df)
#> [1] FALSE TRUE FALSE
is_na(df)
#> [1] FALSE TRUE FALSE
# The below identity should hold
identical(is_na(df), row_na_counts(df) == ncol(df))
#> [1] TRUE
is_na
and all the NA
handling functions fall back on calling
is.na()
if no suitable method is found. This means that custom objects
like vctrs rcrds and more are supported.
Cheap data frame summaries with overview
Inspired by the excellent skimr package, overview()
is a cheaper
alternative designed for larger data.
df <- new_df(
x = sample.int(100, 10^6, TRUE),
y = as_factor(sample(LETTERS, 10^6, TRUE)),
z = rnorm(10^6)
)
overview(df)
#> obs: 1000000
#> cols: 3
#>
#> ----- Numeric -----
#> col n_missng p_complt n_unique mean p0 p25 p50 p75 p100
#> 1 x 0 1 100 50.52 1 25 51 76 100
#> 2 z 0 1 1000000 -0.00038 -4.58 -0.67 -0.00062 0.68 5.08
#> iqr sd hist
#> 1 51 28.88 ▇▇▇▇▇
#> 2 1.35 1 ▁▃▇▂▁
#>
#> ----- Categorical -----
#> col n_missng p_complt n_unique n_levels min max
#> 1 y 0 1 26 26 A Z
mark(overview(df, hist = FALSE))
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 overview(df, hist = FALSE) 71ms 71.8ms 13.7 0B 0
Cheaper and consistent subsetting with sset
sset(iris, 1:5)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
sset(iris, 1:5, j = "Species")
#> Species
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> 5 setosa
# sset always returns a data frame when input is a data frame
sset(iris, 1, 1) # data frame
#> Sepal.Length
#> 1 5.1
iris[1, 1] # not a data frame
#> [1] 5.1
x <- sample.int(10^6, 10^4, TRUE)
y <- sample.int(10^6, 10^4, TRUE)
mark(sset(x, x %in_% y), sset(x, x %in% y), x[x %in% y])
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(x, x %in_% y) 82.5µs 107µs 8401. 96KB 10.4
#> 2 sset(x, x %in% y) 157.2µs 172µs 5560. 286KB 30.6
#> 3 x[x %in% y] 153.1µs 166µs 5414. 325KB 30.8
sset
uses an internal range-based subset when i
is an ALTREP integer
sequence of the form m:n.
mark(sset(df, 0:10^5), df[0:10^5, , drop = FALSE])
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(df, 0:10^5) 135.4µs 194µs 3793. 1.53MB 56.7
#> 2 df[0:10^5, , drop = FALSE] 6.75ms 7.41ms 134. 4.83MB 4.18
It also accepts negative indexes
mark(sset(df, -10^4:0),
df[-10^4:0, , drop = FALSE],
check = FALSE) # The only difference is the row names
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(df, -10^4:0) 778.5µs 2.18ms 505. 15.1MB 133.
#> 2 df[-10^4:0, , drop = FALSE] 20.8ms 20.76ms 48.2 72.5MB 867.
The biggest difference between sset
and [
is the way logical vectors
are handled. The two main differences when i
is a logical vector are:
NA
values are ignored, only the locations ofTRUE
values are used.i
must be the same length asx
and is not recycled.
# Examples with NAs
x <- c(1, 5, NA, NA, -5)
x[x > 0]
#> [1] 1 5 NA NA
sset(x, x > 0)
#> [1] 1 5
# Example with length(i) < length(x)
sset(x, TRUE)
#> Error in sset.default(x, TRUE): `length(i)` must match `length(x)` when `i` is a logical vector
# This is equivalent
x[TRUE]
#> [1] 1 5 NA NA -5
# to..
sset(x)
#> [1] 1 5 NA NA -5
Vector and data frame lags with lag_()
set.seed(37)
lag_(1:10, 3) # Lag(3)
#> [1] NA NA NA 1 2 3 4 5 6 7
lag_(1:10, -3) # Lead(3)
#> [1] 4 5 6 7 8 9 10 NA NA NA
# Using an example from data.table
library(data.table)
#>
#> Attaching package: 'data.table'
#> The following object is masked from 'package:cheapr':
#>
#> address
dt <- data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
# Similar to data.table::shift()
lag_(dt, 1) # Lag
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
lag_(dt, -1) # Lead
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2011 0.07883715 2 b
#> 2: 2012 0.64879698 3 c
#> 3: 2013 0.49685336 4 d
#> 4: 2014 0.71878731 5 e
#> 5: NA NA NA <NA>
With lag_
we can update variables by reference, including entire data
frames
# At the moment, shift() cannot do this
lag_(dt, set = TRUE)
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
dt # Was updated by reference
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
lag2_
is a more generalised variant that supports vectors of lags,
custom ordering and run lengths.
lag2_(dt, order = 5:1) # Reverse order lag (same as lead)
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2011 0.07883715 2 b
#> 3: 2012 0.64879698 3 c
#> 4: 2013 0.49685336 4 d
#> 5: NA NA NA <NA>
lag2_(dt, -1) # Same as above
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2011 0.07883715 2 b
#> 3: 2012 0.64879698 3 c
#> 4: 2013 0.49685336 4 d
#> 5: NA NA NA <NA>
lag2_(dt, c(1, -1)) # Alternating lead/lag
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2011 0.07883715 2 b
#> 3: 2010 0.54964085 1 a
#> 4: 2013 0.49685336 4 d
#> 5: 2012 0.64879698 3 c
lag2_(dt, c(-1, 0, 0, 0, 0)) # Lead e.g. only first row
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
Greatest common divisor and smallest common multiple
gcd2(5, 25)
#> [1] 5
scm2(5, 6)
#> [1] 30
gcd(seq(5, 25, by = 5))
#> [1] 5
scm(seq(5, 25, by = 5))
#> [1] 300
x <- seq(1L, 1000000L, 1L)
mark(gcd(x))
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 gcd(x) 800ns 1µs 904052. 0B 90.4
x <- seq(0, 10^6, 0.5)
mark(gcd(x))
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 gcd(x) 30.9ms 32.6ms 30.9 0B 0
Creating many sequences
As an example, to create 3 sequences with different increments,
the usual approach might be to use lapply to loop through the increment
values together with seq()
# Base R
increments <- c(1, 0.5, 0.1)
start <- 1
end <- 5
unlist(lapply(increments, \(x) seq(start, end, x)))
#> [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
In cheapr you can use seq_()
which accepts vector arguments.
seq_(start, end, increments)
#> [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
Use add_id = TRUE
to label the individual sequences.
seq_(start, end, increments, add_id = TRUE)
#> 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
#> 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4 1.5
#> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
#> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
If you know the sizes of your sequences beforehand, use sequence_()
seq_sizes <- c(3, 5, 10)
sequence_(seq_sizes, from = 0, by = 1/3, add_id = TRUE)
#> 1 1 1 2 2 2 2 2
#> 0.0000000 0.3333333 0.6666667 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
#> 3 3 3 3 3 3 3 3
#> 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333 1.6666667 2.0000000 2.3333333
#> 3 3
#> 2.6666667 3.0000000
You can also calculate the sequence sizes using seq_size()
seq_size(start, end, increments)
#> [1] 5 9 41
‘Cheaper’ Base R alternatives
which
x <- rep(TRUE, 10^6)
mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 2.44ms 3.1ms 280. 3.82MB 13.4
#> 2 base_which 544.4µs 624.4µs 1120. 7.63MB 105.
x <- rep(FALSE, 10^6)
mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 118µs 125µs 7542. 0B 0
#> 2 base_which 224µs 238µs 3822. 3.81MB 136.
x <- c(rep(TRUE, 5e05), rep(FALSE, 1e06))
mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 1.33ms 1.61ms 569. 1.91MB 10.9
#> 2 base_which 516.8µs 786.6µs 1216. 7.63MB 94.0
x <- c(rep(FALSE, 5e05), rep(TRUE, 1e06))
mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 894µs 1.06ms 884. 3.81MB 38.5
#> 2 base_which 707µs 825.45µs 924. 9.54MB 110.
x <- sample(c(TRUE, FALSE), 10^6, TRUE)
x[sample.int(10^6, 10^4)] <- NA
mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 573.4µs 693.9µs 1360. 1.89MB 22.3
#> 2 base_which 3.52ms 3.93ms 248. 5.7MB 13.3
factor
x <- sample(seq(-10^3, 10^3, 0.01))
y <- do.call(paste0, expand.grid(letters, letters, letters, letters))
mark(cheapr_factor = factor_(x),
base_factor = factor(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 8.53ms 9.6ms 103. 4.59MB 4.48
#> 2 base_factor 287.87ms 288ms 3.47 27.84MB 0
mark(cheapr_factor = factor_(x, order = FALSE),
base_factor = factor(x, levels = unique(x)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 2.99ms 3.37ms 280. 1.53MB 4.37
#> 2 base_factor 452.46ms 452.46ms 2.21 22.79MB 2.21
mark(cheapr_factor = factor_(y),
base_factor = factor(y))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 194ms 196.99ms 5.10 5.23MB 0
#> 2 base_factor 2.62s 2.62s 0.381 54.35MB 0.381
mark(cheapr_factor = factor_(y, order = FALSE),
base_factor = factor(y, levels = unique(y)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 4.09ms 4.76ms 203. 3.49MB 12.2
#> 2 base_factor 40.66ms 45.54ms 22.4 39.89MB 33.5
intersect & setdiff
x <- sample.int(10^6, 10^5, TRUE)
y <- sample.int(10^6, 10^5, TRUE)
mark(cheapr_intersect = intersect_(x, y, dups = FALSE),
base_intersect = intersect(x, y))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_intersect 1.83ms 2.06ms 444. 1.18MB 6.91
#> 2 base_intersect 3.23ms 3.66ms 263. 5.16MB 18.8
mark(cheapr_setdiff = setdiff_(x, y, dups = FALSE),
base_setdiff = setdiff(x, y))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_setdiff 1.83ms 1.99ms 471. 1.77MB 12.1
#> 2 base_setdiff 3.33ms 3.56ms 270. 5.71MB 22.0
%in_%
and %!in_%
mark(cheapr = x %in_% y,
base = x %in% y)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr 1.31ms 1.4ms 681. 781.34KB 6.64
#> 2 base 2.06ms 2.24ms 430. 2.53MB 14.0
mark(cheapr = x %!in_% y,
base = !x %in% y)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr 1.26ms 1.44ms 656. 787.84KB 4.21
#> 2 base 2.2ms 2.45ms 393. 2.91MB 8.77
as_discrete
as_discrete
is a cheaper alternative to cut
x <- rnorm(10^6)
b <- seq(0, max(x), 0.2)
mark(cheapr_cut = as_discrete(x, b, left = FALSE),
base_cut = cut(x, b))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_cut 13.8ms 14.8ms 67.3 3.87MB 4.34
#> 2 base_cut 42.5ms 44.5ms 22.5 26.76MB 8.45
cheapr_if_else
A cheap alternative to ifelse
mark(
cheapr_if_else(x >= 0, "pos", "neg"),
ifelse(x >= 0, "pos", "neg"),
data.table::fifelse(x >= 0, "pos", "neg")
)
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 "cheapr_if_else(x >= 0, \"pos\… 8.79ms 9.52ms 102. 11.4MB 24.9
#> 2 "ifelse(x >= 0, \"pos\", \"neg… 129.33ms 129.33ms 7.73 53.4MB 23.2
#> 3 "data.table::fifelse(x >= 0, \… 9.22ms 9.8ms 100. 11.4MB 21.1
case
cheapr’s version of a case-when statement, with mostly the same
arguments as dplyr::case_when
but similar efficiency as
data.table::fcase
mark(case(
x >= 0 ~ "pos",
x < 0 ~ "neg",
.default = "Unknown"
),
data.table::fcase(
x >= 0, "pos",
x < 0, "neg",
rep_len(TRUE, length(x)), "Unknown"
))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "case(x >= 0 ~ \"pos\", x < 0 ~ \"… 17.5ms 18.9ms 52.4 28.7MB 37.4
#> 2 "data.table::fcase(x >= 0, \"pos\"… 15.8ms 16.9ms 58.4 26.7MB 36.5
val_match
is an even cheaper special variant of case
when all LHS
expressions are length-1 vectors, i.e scalars
x <- round(rnorm(10^6))
mark(
val_match(x, 1 ~ Inf, 2 ~ -Inf, .default = NaN),
case(x == 1 ~ Inf,
x == 2 ~ -Inf,
.default = NaN),
data.table::fcase(x == 1, Inf,
x == 2, -Inf,
rep_len(TRUE, length(x)), NaN)
)
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:t> <bch:t> <dbl> <bch:byt> <dbl>
#> 1 val_match(x, 1 ~ Inf, 2 ~ -Inf, … 3.22ms 3.67ms 250. 8.79MB 27.5
#> 2 case(x == 1 ~ Inf, x == 2 ~ -Inf… 12.88ms 14.52ms 69.0 27.63MB 49.8
#> 3 data.table::fcase(x == 1, Inf, x… 11.83ms 12.95ms 74.7 30.52MB 65.4
get_breaks
is a very fast function for generating pretty equal-width
breaks It is similar to base::pretty
though somewhat less flexible
with simpler arguments.
x <- with_local_seed(rnorm(10^5), 112)
# approximately 10 breaks
get_breaks(x, 10)
#> [1] -6 -4 -2 0 2 4 6
pretty(x, 10)
#> [1] -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
mark(
get_breaks(x, 20),
pretty(x, 20),
check = FALSE
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 get_breaks(x, 20) 60.9µs 64.8µs 14306. 0B 0
#> 2 pretty(x, 20) 401.2µs 566.1µs 1747. 1.91MB 28.4
# Not pretty but equal width breaks
get_breaks(x, 5, pretty = FALSE)
#> [1] -5.0135893 -3.2004889 -1.3873886 0.4257118 2.2388121 4.0519125
diff(get_breaks(x, 5, pretty = FALSE)) # Widths
#> [1] 1.8131 1.8131 1.8131 1.8131 1.8131
It can accept both data and a length-two vector representing a range, meaning it can easily be used in ggplot2 and base R plots
library(ggplot2)
gg <- airquality |>
ggplot(aes(x = Ozone, y = Wind)) +
geom_point() +
geom_smooth(se = FALSE)
# Add our breaks
gg +
scale_x_continuous(breaks = get_breaks)
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
#> Warning: Removed 37 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 37 rows containing missing values or values outside the scale range
#> (`geom_point()`).
# More breaks
# get_breaks accepts a range too
gg +
scale_x_continuous(breaks = \(x) get_breaks(range(x), 20))
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
#> Warning: Removed 37 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Removed 37 rows containing missing values or values outside the scale range
#> (`geom_point()`).