# NOT RUN {
## Smoking cessation NMA
# Set up network of smoking cessation data
head(smoking)
smk_net <- set_agd_arm(smoking,
                       study = studyn,
                       trt = trtc,
                       r = r,
                       n = n,
                       trt_ref = "No intervention")
# Print details
smk_net
# }
# NOT RUN {
# Fitting a fixed effect model
smk_fit_FE <- nma(smk_net,
              trt_effects = "fixed",
              prior_intercept = normal(scale = 100),
              prior_trt = normal(scale = 100))
smk_fit_FE
# }
# NOT RUN {
# }
# NOT RUN {
# Fitting a random effects model
smk_fit_RE <- nma(smk_net,
                  trt_effects = "random",
                  prior_intercept = normal(scale = 100),
                  prior_trt = normal(scale = 100),
                  prior_het = normal(scale = 5))
smk_fit_RE
# }
# NOT RUN {
# }
# NOT RUN {
# Fitting an unrelated mean effects (inconsistency) model
smk_fit_RE_UME <- nma(smk_net,
                      consistency = "ume",
                      trt_effects = "random",
                      prior_intercept = normal(scale = 100),
                      prior_trt = normal(scale = 100),
                      prior_het = normal(scale = 5))
smk_fit_RE_UME
# }
# NOT RUN {
## Plaque psoriasis ML-NMR
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
                  studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd,
                  studyc == "FIXTURE")
head(pso_ipd)
head(pso_agd)
pso_ipd <- pso_ipd %>%
  mutate(# Variable transformations
    bsa = bsa / 100,
    prevsys = as.numeric(prevsys),
    psa = as.numeric(psa),
    weight = weight / 10,
    durnpso = durnpso / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                         trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                         trtn == 4 ~ "TNFa blocker"),
    # Check complete cases for covariates of interest
    complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
  )
pso_agd <- pso_agd %>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight_sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso_sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                         trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                         trtn == 4 ~ "TNFa blocker")
  )
# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)
pso_net <- combine_network(
  set_ipd(pso_ipd,
          study = studyc,
          trt = trtc,
          r = pasi75,
          trt_class = trtclass),
  set_agd_arm(pso_agd,
              study = studyc,
              trt = trtc,
              r = pasi75_r,
              n = pasi75_n,
              trt_class = trtclass)
)
# Print network details
pso_net
# Add integration points to the network
pso_net <- add_integration(pso_net,
  durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
  prevsys = distr(qbern, prob = prevsys),
  bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
  weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
  psa = distr(qbern, prob = psa),
  n_int = 1000)
# }
# NOT RUN {
# Fitting a ML-NMR model.
# Specify a regression model to include effect modifier interactions for five
# covariates, along with main (prognostic) effects. We use a probit link and
# specify that the two-parameter Binomial approximation for the aggregate-level
# likelihood should be used. We set treatment-covariate interactions to be equal
# within each class. We narrow the possible range for random initial values with
# init_r = 0.1, since probit models in particular are often hard to initialise.
# Using the QR decomposition greatly improves sampling efficiency here, as is
# often the case for regression models.
pso_fit <- nma(pso_net,
               trt_effects = "fixed",
               link = "probit",
               likelihood = "bernoulli2",
               regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
               class_interactions = "common",
               prior_intercept = normal(scale = 10),
               prior_trt = normal(scale = 10),
               prior_reg = normal(scale = 10),
               init_r = 0.1,
               QR = TRUE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab