Learn R Programming

assist (version 2.0)

nnr.control: Set Control Parameters for nnr

Description

Control parameters supplied in the function call replace the defaults to be used in calling nnr.

Usage

nnr.control(job = -1, tol = 0, max.iter = 50, init = 0, limnla = c(-10, 
    0), varht = NULL, theta = NULL, prec = 1e-06, maxit = 30, 
    method = "NR", increment = 1e-04, backfit = 5, converg = "coef", 
    toler = 0.001)

Arguments

job
an integer representing the optimization method used to find the smoothing parameter. The options are job=-1: golden-section search on (limnla(1), limnla(2)); job=0: golden-section search with interval specified automatically; job >0: regular grid sear
tol
tolerance for truncation used in `dsidr'. Default is 0.0, which sets to square of machine precision.
max.iter
maximum number of iterations allowed for the Gauss-Newton/Newton-Raphson iteration.
init
an integer of 0 or 1 indicating if initial values are provided for theta. If init=1, initial values are provided using theta. Default is 0.
limnla
a vector of length 2, specifying a search range for the n times smoothing parameter on log10 scale. Default is (-10, 0).
varht
needed only when vmu="u", which gives the fixed variance in calculation of the UBR function. Default is NULL.
theta
If `init=1', theta includes intial values for smoothing parameters. Default is NULL.
prec
precision requested for the minimum score value, where precision is the weaker of the absolute and relative precisions. Default is 1e-06.
maxit
maximum number of iterations allowed. Default is 30.
method
a character string specifying a method for iterations, "GN" for Gauss-Newton and "NR" for Newton-Raphson. Default is "GN".
increment
backfit
an integer representing the number of backfitting iterations for multiple functions. Default is 5.
converg
an optional character, with possible values "coef" and "ortho", specifying the convergence criterion to be used. "coef" uses the change of estimate of parameters and functions to assess convergence, and "ortho" uses a criterion similar to the relative
toler
tolerance for convergence of the algorithm. Default is 0.001.

Value

  • returned is a list includes all re-seted control parameters.

See Also

nnr, dsidr,dmudr

Examples

Run this code
## use Newton-Raphson 
nnr.control(method="NR")

Run the code above in your browser using DataLab