network is the list of
nodes. The nodes summarize the local properties of a node given the
parents of the node.node (idx,parents,type,name=paste(idx),
levels=2,levelnames=paste(1:levels),position=c(0,0))
## S3 method for class 'node':
print (x,filename=NA,master=FALSE,condposterior=TRUE,condprior=TRUE,...)
## S3 method for class 'node':
plot (x,cexscale=10,notext=FALSE,scale=10,...)
prob.node (x,nw,df)"discrete" or "continuous".type="discrete", this is the number of levels
for the discrete variable.type="discrete" this is a vector of
strings (same size as levels) with the names of the
levels.network and drawnetwork.TRUE/FALSETRUE/FALSETRUE/FALSE.FALSE, do not display text on plots.continuous or discrete.insert function.network.jointprior using the master prior procedure (see
localmaster).learnnode.learnnode.makesimprob and used by
simulation.A <- factor(rep(c("A1","A2"),50))
B <- factor(rep(rep(c("B1","B2"),25),2))
thisnet <- network( data.frame(A,B) )Run the code above in your browser using DataLab