Learn R Programming

lestat (version 1.9)

normalexpgamma: A Normal-ExpGamma Distribution

Description

Creates an object representing a Normal-ExpGamma distribution. If \((x,y)\) has a Normal-ExpGamma distribution, then the marginal distribution of \(y\) is an ExpGamma distribution, and the conditional distribution of \(x\) given \(y\) is normal.

Usage

normalexpgamma(mu, kappa, alpha, beta)

Arguments

mu

The mu parameter.

kappa

The kappa parameter.

alpha

The alpha parameter.

beta

The beta parameter.

Value

A Normal-ExpGamma probability distribution.

Details

If \((x,y)\) has a Normal-ExpGamma distribution with parameters \(\mu\), \(\kappa\), \(\alpha\), and \(\beta\), then the marginal distribution of \(y\) has an ExpGamma distribution with parameters \(\alpha\), \(\beta\), and -2, and conditionally on \(y\), \(x\) has a normal distribution with expectation \(\mu\) and logged standard deviation \(\kappa + y\). The probability density is proportional to $$ f(x,y)=\exp(-(2\alpha + 1)y - e^{-2y}(\beta + e^{-2\kappa}(x-\mu)^2/2)) $$

See Also

gamma, normal, expgamma, normalgamma, mnormal, mnormalgamma, mnormalexpgamma

Examples

Run this code
# NOT RUN {
plot(normalexpgamma(3,4,5,6))
# }

Run the code above in your browser using DataLab