normalizeCounts(x, fun=mean, offset=10L, basal=1e-4, lambda=c(0.1, 0.1),
fit=FALSE, multicore=TRUE, optimizer="all", ...)
TssData
with raw data to normalize.mean
).basal
rate.optim
function from the stats package,
bobyqa for the bobyqa
function from the
minqu package,or all for taking the best fit out of
both.TssNorm
.
signature(x="TssData")
normalizeCounts(x, ...)
For $\sQuote{lambda[1] > 0}$, counts unequal to zero are penalized to obtain conservative estimates of the transcription levels with a preferably small number components, i.e. genomic positions, unequal to zero. The larger $\sQuote{lambda[1]}$, the more conservative is the identification procedure.
To enhance the shrinkage of isolated counts in comparison to counts in regions of strong transcriptional activity, the information of consecutive genomic positions in the measurements is regarded by evaluating differences between adjacent count estimates.
In order to distribute the identification step over multiple processor
cores, the mclapply
function of the parallel package can
be used. For this, the parallel package has to be loaded
manually before starting the computation, additional parameters are
passed via the ...
argument, e.g.as normalizeCounts(x,
mc.cores=2)
. The multicore
argument can further be used to
temporarily disable the parallel estimation by setting it to
FALSE
.
TssData
, TssNorm
,
TssResult
Methods:
segmentizeCounts
, normalizeCounts
,
identifyStartSites
, get-methods
,
plot-methods
, asRangedData-methods
Functions:
subtract-functions
Data set:
physcoCounts
Package:
TSSi-package
## preceding steps
example(segmentizeCounts)
## normalize data, w/o and w/ fitting
yRatio <- normalizeCounts(x)
yFit <- normalizeCounts(x, fit=TRUE)
yFit
## Not run:
# ## parallel computation
# library(parallel)
# yFit <- normalizeCounts(x, fit=TRUE, mc.ncores=2)
# ## End(Not run)
Run the code above in your browser using DataLab