## generate a sample of 20 observations from a N(-0.5,1) population
x<-rnorm(20,-0.5,1)
## find the posterior density with a uniform U[-3,3] prior on mu
normgcp(x,1,params=c(-3,3))
## find the posterior density with a non-uniform prior on mu
mu<-seq(-3,3,by=0.1)
mu.prior<-rep(0,length(mu))
mu.prior[mu<=0]<-1/3+mu[mu<=0]/9
mu.prior[mu>0]<-1/3-mu[mu>0]/9
normgcp(x,1,density="user",mu=mu,mu.prior=mu.prior)
## find the CDF for the previous example and plot it
results<-normgcp(x,1,density="user",mu=mu,mu.prior=mu.prior,ret=TRUE)
cdf<-sintegral(mu,results$posterior,n.pts=length(mu),ret=TRUE)
plot(cdf,type="l",xlab=expression(mu[0])
,ylab=expression(Pr(mu<=mu[0])))
## use the CDF for the previous example to find a 95\%
## credible interval for mu. Thanks to John Wilkinson for this simplified code
lcb<-cdf$x[with(cdf,which.max(x[y<=0.025]))]
ucb<-cdf$x[with(cdf,which.max(x[y<=0.975]))]
cat(paste("Approximate 95% credible interval : ["
,round(lcb,4),"",round(ucb,4),"]
",sep=""))
## use the CDF from the previous example to find the posterior mean
## and std. deviation
dens<-mu*results$posterior
post.mean<-sintegral(mu,dens)
dens<-(mu-post.mean)^2*results$posterior
post.var<-sintegral(mu,dens)
post.sd<-sqrt(post.var)
## use the mean and std. deviation from the previous example to find
## an approximate 95\% credible interval
lb<-post.mean-qnorm(0.975)*post.sd
ub<-post.mean+qnorm(0.975)*post.sd
cat(paste("Approximate 95% credible interval : ["
,round(lb,4),"",round(ub,4),"]
",sep=""))
Run the code above in your browser using DataLab