Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with normal for bulk
distribution upto the threshold and conditional GPD above threshold with continuity
at threshold. The parameters
are the normal mean nmean
and standard deviation nsd
, threshold u
and GPD shape xi
and tail fraction phiu
.
dnormgpdcon(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
xi = 0, phiu = TRUE, log = FALSE)pnormgpdcon(q, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
xi = 0, phiu = TRUE, lower.tail = TRUE)
qnormgpdcon(p, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
xi = 0, phiu = TRUE, lower.tail = TRUE)
rnormgpdcon(n = 1, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
xi = 0, phiu = TRUE)
quantiles
normal mean
normal standard deviation (positive)
threshold
shape parameter
probability of being above threshold TRUE
logical, if TRUE then log density
quantiles
logical, if FALSE then upper tail probabilities
cumulative probabilities
sample size (positive integer)
dnormgpdcon
gives the density,
pnormgpdcon
gives the cumulative distribution function,
qnormgpdcon
gives the quantile function and
rnormgpdcon
gives a random sample.
Extreme value mixture model combining normal distribution for the bulk below the threshold and GPD for upper tail with continuity at threshold.
The user can pre-specify phiu
permitting a parameterised value for the tail fraction phiu=TRUE
the tail fraction is estimated as the tail fraction from the
normal bulk model.
The cumulative distribution function with tail fraction phiu=TRUE
), upto the
threshold pnorm(x, nmean, nsd)
and
pgpd(x, u, sigmau, xi)
) respectively.
The cumulative distribution function for pre-specified
The continuity constraint means that dnorm(x, nmean, nsd)
and
dgpd(x, u, sigmau, xi)
) respectively. The resulting GPD scale parameter is then:
See gpd
for details of GPD upper tail component and
dnorm
for details of normal bulk component.
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling. 4(3), 227-244.
Other normgpd: fgng
, fhpd
,
fitmnormgpd
, flognormgpd
,
fnormgpdcon
, fnormgpd
,
gngcon
, gng
,
hpdcon
, hpd
,
itmnormgpd
, lognormgpdcon
,
lognormgpd
, normgpd
Other normgpdcon: fgngcon
,
fhpdcon
, flognormgpdcon
,
fnormgpdcon
, fnormgpd
,
gngcon
, gng
,
hpdcon
, hpd
,
normgpd
Other gngcon: fgngcon
, fgng
,
fnormgpdcon
, gngcon
,
gng
Other fnormgpdcon: fnormgpdcon
# NOT RUN {
set.seed(1)
par(mfrow = c(2, 2))
x = rnormgpdcon(1000)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpdcon(xx))
# three tail behaviours
plot(xx, pnormgpdcon(xx), type = "l")
lines(xx, pnormgpdcon(xx, xi = 0.3), col = "red")
lines(xx, pnormgpdcon(xx, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
x = rnormgpdcon(1000, phiu = 0.2)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpdcon(xx, phiu = 0.2))
plot(xx, dnormgpdcon(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dnormgpdcon(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dnormgpdcon(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab