# NOT RUN {
# Import data.
fname <- system.file("extdata", "finndiane.txt", package = "Numero")
dataset <- read.delim(file = fname)
# Detect binary columns.
dataset <- nroPreprocess(dataset, method = "")
# Prepare training data.
trvars <- c("CHOL", "HDL2C", "TG", "CREAT", "uALB")
trdata <- scale.default(dataset[,trvars])
# K-means clustering.
km <- nroKmeans(data = trdata)
# Self-organizing map.
sm <- nroKohonen(seeds = km)
sm <- nroTrain(map = sm, data = trdata)
# Assign data points into districts.
matches <- nroMatch(centroids = sm, data = trdata)
# Select a subset of variables and detect binary data.
vars <- c("AGE", "MALE", "uALB", "CHOL", "DIAB_KIDNEY", "DECEASED")
selected <- nroPreprocess(dataset[,vars], method = "")
# Calculate district averages for seleted variables.
vars <- c("AGE", "MALE", "uALB", "CHOL", "DIAB_KIDNEY", "DECEASED")
planes <- nroAggregate(topology = sm, districts = matches, data = selected)
# Estimate statistics.
stats <- nroPermute(map = sm, districts = matches, data = selected)
# Set visuals.
colrs <- nroColorize(values = planes, amplitudes = stats)
labls <- nroLabel(topology = sm, values = planes)
# Add subgrouping information.
topo <- sm$topology
topo$REGION <- ""
topo$REGION[1:8] <- "Center"
topo$REGION[9:21] <- "Perimeter"
# Add subgroup labels.
topo$REGION.label <- ""
topo$REGION.label[1:8] <- "C"
topo$REGION.label[9:21] <- "P"
# Add subgroup colors.
topo$REGION.color <- ""
topo$REGION.color[1:8] <- "#00f00060"
topo$REGION.color[9:21] <- "#f000f060"
# Plot colorings on screen.
nroPlot(topology = topo, colors = colrs, labels = labls)
# Save colorings in file.
#fn <- "colorings.html"
#n <- nroPlot.save(file = fn, topology = topo,
# colors = colrs, labels = labls)
#cat(n, " bytes saved in '", fn, "'\n", sep="")
# }
Run the code above in your browser using DataLab