doibeta(x, shape1, shape2, p1, ncp=0, log=FALSE)
poibeta(q, shape1, shape2, p1, ncp=0, lower.tail = TRUE, log.p = FALSE)
qoibeta(p, shape1, shape2, p1, ncp=0, lower.tail = TRUE, log.p = FALSE)
roibeta(n, shape1, shape2, p1, ncp=0)
ecoibeta(x, shape1, shape2, p1, ncp=0)
moibeta(order, shape1, shape2, p1, ncp=0)
length(n) > 1
, the length is take to be the number required.TRUE
, probabilities p
are given as log(p).TRUE
(default), probabilities are $P[X <= x]$,="" otherwise,="" $p[x=""> x]$.=>d,p,q,ec,m
-oibeta
functions computes the density function,
the distribution function, the quantile function, the exposure curve function and raw moments
of the one-inflated beta distribution.
roibeta
generates random variates of this distribution.mbbefd-distr
and oidistribution
.