Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.
ols_step_forward_p(model, ...)# S3 method for default
ols_step_forward_p(model, penter = 0.3, details = FALSE,
...)
# S3 method for ols_step_forward_p
plot(x, model = NA, ...)
An object of class lm
; the model should include all
candidate predictor variables.
Other arguments.
p value; variables with p value less than penter
will
.enter into the model
Logical; if TRUE
, will print the regression result at
each step.
An object of class ols_step_forward_p
.
ols_step_forward_p
returns an object of class "ols_step_forward_p"
.
An object of class "ols_step_forward_p"
is a list containing the
following components:
number of steps
variables added to the model
coefficient of determination
akaike information criteria
bayesian information criteria
sawa's bayesian information criteria
adjusted r-square
root mean square error
mallow's Cp
predictors
ols_step_forward()
has been deprecated. Instead use ols_step_forward_p()
.
Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.
Other variable selection procedures: ols_step_all_possible
,
ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_best_subset
,
ols_step_both_aic
,
ols_step_forward_aic
# NOT RUN {
# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_p(model)
# }
# NOT RUN {
# }
# NOT RUN {
# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_p(model)
plot(k)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab