Moves examples in a codebook to better represent the training set.
olvq1(x, cl, codebk, niter = 40 * nrow(codebk$x), alpha = 0.3)
a matrix or data frame of examples
a vector or factor of classifications for the examples
a codebook
number of iterations
constant for training
A codebook, represented as a list with components x
and cl
giving
the examples and classes.
Selects niter
examples at random with replacement, and adjusts the
nearest example in the codebook for each.
Kohonen, T. (1990) The self-organizing map. Proc. IEEE 78, 1464--1480.
Kohonen, T. (1995) Self-Organizing Maps. Springer, Berlin.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
# NOT RUN {
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
cd <- lvqinit(train, cl, 10)
lvqtest(cd, train)
cd1 <- olvq1(train, cl, cd)
lvqtest(cd1, train)
# }
Run the code above in your browser using DataLab