## create two sequences, with different parameter values
y1<- sim.GRW(ns=20, ms=0, vs=1)
y2<- sim.GRW(ns=20, ms=0, vs=0.2)
## fit some models with at least some shared dynamics across sequences
m1<- opt.RW.Mult(list(y1,y2), model="GRW")
m2<- opt.RW.SameMs(list(y1, y2))
m3<- opt.RW.SameVs(list(y1,y2))
## fit separate models to each sequence
msep1<- opt.GRW(y1)
msep2<- opt.GRW(y2)
sep.logL<- msep1$value + msep2$value # total logL sums across two solutions
sep.aic <- -2*sep.logL + 2*4 # AIC of separate solutions
## check out resulting log-likelihoods and AIC values
mres<- array(dim=c(4,2))
row.names(mres)<- c("m1", "m2", "m3", "msep")
colnames(mres)<- c("logL", "AIC")
mres[1,]<- c(m1$value, m1$AIC)
mres[2,]<- c(m2$value, m2$AIC)
mres[3,]<- c(m3$value, m3$AIC)
mres[4,]<- c(sep.logL, sep.aic)
print (mres)
Run the code above in your browser using DataLab