Last chance! 50% off unlimited learning
Sale ends in
optimum
can be used to obtain the optimal scalar Mean Square Error (MSE) values and its corresponding parameter values (k
and/or d
) of all estimators and the optimum Prediction Sum of Square (PRESS) values and its corresponding parameter values k
and d
of some of the estimators considered in this package.
optimum(formula , r, R, dpn, delt, aa1, aa2, aa3, k, d, press = FALSE, data = NULL, na.action, ...)
formula
.
R
should be given as either a vector
or a matrix
. See ‘Examples’.
dpn
should be given as either a vector
(only the diagonal elements) or a matrix
. See ‘Examples’.
vector
or a matrix
. See ‘Examples’.
vector
, format. See ‘Details’.
vector
, format. See ‘Details’.
vector
, format. See ‘Details’.
k
and d
values. Otherwise summary of scalar MSE of all estimators are returned with corresponding k
and/or d
values.
data
, the variables are taken from environment(formula)
, typically the environment from which the function is called.
NA
values, then na.action
indicate what should happen to those NA
values.
optimum
returns the optimum scalar MSE values and corresponding parameter values of all estimators. If “press=TRUE” then optimum
return the optimum PRESS values and corresponding parameter values of some of the estimators.
y ~ x - 1
or y ~ 0 + x
to remove the intercept.Optimum scalar MSE values of all estimators can be found for a given range of parameters. Hence the best estimator can be found based on the MSE criteria. Further prior information should be given in order to obtained the results.
The way of finding aa1
, aa2
and aa3
can be determined from Rong,Jian-Ying, (2010), Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
## portland cement data set is used.
data(pcd)
attach(pcd)
k<-c(0:3/10)
d<-c(-3:3/10)
r<-c(2.1930,1.1533,0.75850)
R<-c(1,0,0,0,0,1,0,0,0,0,1,0)
dpn<-c(0.0439,0.0029,0.0325)
delt<-c(0,0,0)
aa1<-c(0.958451,1.021155,0.857821,1.040296)
aa2<-c(0.345454,1.387888,0.866466,1.354454)
aa3<-c(0.344841,1.344723,0.318451,1.523316)
optimum(Y~X1+X2+X3+X4-1,r,R,dpn,delt,aa1,aa2,aa3,k,d,data=pcd)
# Model without the intercept is considered.
## Use "press=TRUE" to get the optimum PRESS values only for some of the estimators.
Run the code above in your browser using DataLab