Learn R Programming

scde (version 2.0.1)

pagoda.cluster.cells: Determine optimal cell clustering based on the genes driving the significant aspects

Description

Determines cell clustering (hclust result) based on a weighted correlation of genes underlying the top aspects of transcriptional heterogeneity. Branch orientation is optimized if 'cba' package is installed.

Usage

pagoda.cluster.cells(tam, varinfo, method = "ward.D",
  include.aspects = FALSE, verbose = 0, return.details = FALSE)

Arguments

tam
result of pagoda.top.aspects() call
varinfo
result of pagoda.varnorm() call
method
clustering method ('ward.D' by default)
include.aspects
whether the aspect patterns themselves should be included alongside with the individual genes in calculating cell distance
verbose
0 or 1 depending on level of desired verbosity
return.details
Boolean of whether to return just the hclust result or a list containing the hclust result plus the distance matrix and gene values

Value

  • hclust result

Examples

Run this code
data(pollen)
cd <- clean.counts(pollen)
knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10)
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var = 5, n.cores = 1, plot = FALSE)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
tam <- pagoda.top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96)  # top aspects based on GO only
hc <- pagoda.cluster.cells(tam, varinfo)
plot(hc)

Run the code above in your browser using DataLab