Learn R Programming

scde (version 2.0.1)

pagoda.reduce.redundancy: Collapse aspects driven by similar patterns (i.e. separate the same sets of cells)

Description

Examines PC loading vectors underlying the identified aspects and clusters aspects based on score correlation. Clusters of aspects driven by the same patterns are determined based on the distance.threshold.

Usage

pagoda.reduce.redundancy(tamr, distance.threshold = 0.2,
  cluster.method = "complete", distance = NULL,
  weighted.correlation = TRUE, plot = FALSE, top = Inf, trim = 0,
  abs = FALSE, ...)

Arguments

tamr
output of pagoda.reduce.loading.redundancy()
distance.threshold
similarity threshold for grouping interdependent aspects
cluster.method
one of the standard clustering methods to be used (fastcluster::hclust is used if available or stats::hclust)
distance
distance matrix
weighted.correlation
Boolean of whether to use a weighted correlation in determining the similarity of patterns
plot
Boolean of whether to show plot
top
Restrict output to the top n aspects of heterogeneity
trim
Winsorization trim to use prior to determining the top aspects
abs
Boolean of whether to use absolute correlation
...
additional arguments are passed to the pagoda.view.aspects() method during plotting

Value

  • a list structure analogous to that returned by pagoda.top.aspects(), but with addition of a $cnam element containing a list of aspects summarized by each row of the new (reduced) $xv and $xvw

Examples

Run this code
data(pollen)
cd <- clean.counts(pollen)
knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10)
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var = 5, n.cores = 1, plot = FALSE)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
tam <- pagoda.top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96)  # top aspects based on GO only
tamr <- pagoda.reduce.loading.redundancy(tam, pwpca)
tamr2 <- pagoda.reduce.redundancy(tamr, distance.threshold = 0.9, plot = TRUE, labRow = NA, labCol = NA, box = TRUE, margins = c(0.5, 0.5), trim = 0)

Run the code above in your browser using DataLab