## SIMPLE EXAMPLE OF A PARALLEL ANALYSIS
## OF A CORRELATION MATRIX WITH ITS PLOT
data(dFactors)
eig <- dFactors$Raiche$eigenvalues
subject <- dFactors$Raiche$nsubjects
var <- length(eig)
rep <- 100
cent <- 0.95
results <- parallel(subject,var,rep,cent)
results
## IF THE DECISION IS BASED ON THE CENTILE USE qevpea INSTEAD
## OF mevpea ON THE FIRST LINE OF THE FOLLOWING CALL
plotuScree(eig,
main = "Parallel Analysis"
)
lines(1:var,
results$eigen$qevpea,
type="b",
col="green"
)
## ANOTHER SOLUTION IS SIMPLY TO
plotParallel(results)
## RESULTS
# $eigen
# mevpea sevpea qevpea sevpea.1
# V1 1.5421626 0.09781869 1.4037201 0.020670924
# V2 1.3604323 0.05728471 1.2768656 0.012105332
# V3 1.2249034 0.04704870 1.1482431 0.009942272
# V4 1.1189148 0.03662555 1.0605407 0.007739666
# V5 1.0221635 0.04048780 0.9599296 0.008555832
# V6 0.9318382 0.04053704 0.8647949 0.008566237
# V7 0.8381154 0.04026090 0.7758708 0.008507883
# V8 0.7493151 0.04729122 0.6727706 0.009993521
# V9 0.6568985 0.04664676 0.5756055 0.009857334
# V10 0.5552561 0.04942935 0.4800394 0.010445348
# $subject
# [1] 100
# $variables
# [1] 10
# $centile
# [1] 0.05
# attr(,"class")
# [1] "parallel"
Run the code above in your browser using DataLab