## Not run:
# # Load the library which provides svm
# library(e1071)
#
# # Create your data
# data(iris)
#
# # Create a model
# parSvmModel <- parallelML("svm(formula = Species ~ ., data = iris)",
# "e1071",samplingSize = 0.8)
#
# # Get prediction
# parSvmPred <- predictML("predict(parSvmModel,newdata=iris)",
# "e1071","vote")
#
# # Check the quality
# table(parSvmPred,iris$Species)
# ## End(Not run)
## Not run:
# # Load the library which provides rpart
# library(rpart)
#
# # Create your data
# data("magicData")
#
# # Create a model
# parTreeModel <- parallelML("rpart(formula = V11 ~ ., data = trainData[,-1])",
# "rpart",samplingSize = 0.8)
#
# # Get prediction
# parTrainTreePred <- predictML("predict(parTreeModel,newdata=trainData[,-1],type='class')",
# "rpart","vote")
# parTestTreePred <- predictML("predict(parTreeModel,newdata=testData[,-1],type='class')",
# "rpart","vote")
#
# # Check the quality
# table(parTrainTreePred,trainData$V11)
# table(parTestTreePred,testData$V11)
# ## End(Not run)
## Not run:
# # Load the library which provides svm
# library(e1071)
#
# # Create your data
# data(iris)
# subdata <- iris[1:60,]
#
# # Create a model
# parsvmmodel <- parallelML("svm(formula = Species ~ ., data = subdata)",
# "e1071",samplingSize = 0.8,
# underSample = TRUE, underSampleTarget = "versicolor")
#
# # Get prediction
# parsvmpred <- predictML("predict(parsvmmodel,newdata=subdata)",
# "e1071","vote")
#
# # Check the quality
# table(parsvmpred,subdata$Species)
# ## End(Not run)
## Not run:
# # Load the library which provides svm
# library(e1071)
#
# # Create your data
# data(iris)
#
# # Create a model
# parsvmmodel <- parallelML("svm(formula = Species ~ ., data = iris)",
# "e1071",samplingSize = 0.6,
# sampleMethod = "random")
#
# # Get prediction
# parsvmpred <- predictML("predict(parsvmmodel,newdata=iris)",
# "e1071","vote")
#
# # Check the quality
# table(parsvmpred,iris$Species)
# ## End(Not run)
Run the code above in your browser using DataLab