## S3 method for class '1d.ssa':
parestimate(x, groups, method = c("pairs", "esprit-ls", "esprit-tls"),
..., drop = TRUE)
## S3 method for class 'toeplitz.ssa':
parestimate(x, groups, method = c("pairs", "esprit-ls", "esprit-tls"),
..., drop = TRUE)
## S3 method for class 'mssa':
parestimate(x, groups, method = c("pairs", "esprit-ls", "esprit-tls"),
..., drop = TRUE)
## S3 method for class '2d.ssa':
parestimate(x, groups,
method = c("esprit-diag-ls", "esprit-diag-tls",
"esprit-memp-ls", "esprit-memp-tls"),
...,
beta = 8,
drop = TRUE)
For 'method' = 'pairs' all moduli are set equal to 1 and all rates equal to 0.
For 2D-SSA, a list of objects of S3-class `fdimpars.2d'. Each object is unnamed list of two `fdimpars.1d' objects, each for corresponding spatial coordinate.
In all cases elements of the list have the same names as elements of
groups
. If group is unnamed, corresponding component gets name
`Fn', where `n' is its index in groups
list.
If 'drop = TRUE' and length of 'groups' is one, then corresponding list of estimated parameters is returned.
For images, the model
Also `print' and `plot' methods are implemented for classes `fdimpars.1d' and `fdimpars.2d'.
Roy, R., Kailath, T., (1989): ESPRIT: estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. 37, 984--995.
Rouquette, S., Najim, M. (2001): Estimation of frequencies and damping factors by two- dimensional esprit type methods. IEEE Transactions on Signal Processing 49(1), 237--245.
Wang, Y., Chan, J-W., Liu, Zh. (2005): Comments on ``estimation of frequencies and damping factors by two-dimensional esprit type methods''. IEEE Transactions on Signal Processing 53(8), 3348--3349.
# Decompose 'co2' series with default parameters
s <- ssa(co2, neig = 20)
# Estimate the periods from 2nd and 3rd eigenvectors using default
# 'pairs' method
print(parestimate(s, groups = list(c(2, 3))))
# Estimate the peroids from 2nd, 3rd, 5th and 6th eigenvectors using ESPRIT
pe <- parestimate(s, groups = list(c(2, 3, 5, 6)), method = "esprit-ls")
print(pe)
plot(pe)
# Artificial image for 2D SSA
mx <- outer(1:50, 1:50,
function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
rnorm(50^2, sd = 0.1)
# Decompose 'mx' with default parameters
s <- ssa(mx, kind = "2d-ssa")
# Estimate parameters
pe <- parestimate(s, groups = list(1:5))
print(pe)
plot(pe, col = c("green", "red", "blue"))
# Real example: Mars photo
data(Mars)
# Decompose only Mars image (without backgroud)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
# Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13,14, 17, 18))))
# Estimate pattern parameters
pe <- parestimate(s, groups = list(c(13,14, 17, 18)))
print(pe)
plot(pe, col = c("green", "red", "blue", "black"))
Run the code above in your browser using DataLab