# NOT RUN {
# }
# NOT RUN {
# -- random intercept example --- #
p=5;sigma_e=.5;sigma_a=.5;v=rep(1,p);n=500;pnoise=2
random_intercept=rnorm(n,sd=sigma_a)
random_intercept=as.numeric(matrix(random_intercept,nrow=p,ncol=n,byrow=TRUE))
x=random_intercept+rnorm(n*p,sd=sigma_e)
z_cat=sample(c(0,.3),length(x),replace=TRUE)
x=x+z_cat
id=sort(rep(1:n,p))
time<-rep(1:p,n)
znoise=matrix(rnorm(n*p*pnoise),ncol=pnoise)
xx=cbind(time,x,as.numeric(z_cat>0),znoise)
# fit historical random forest
hb=hrf(x=xx,time=time,id=id,yindx=2,ntrees=100,mtry=4,nsamp=5,se=TRUE,B=50)
# partial dependence of second predictor (the historical values of response)
pd=partdep_hrf(hb,xindx=2,ngrid=25,subsample=.1)
# partial dependence of categorical predictor
pd=partdep_hrf(hb,xindx=3,ngrid=25,subsample=.1,cat.plot=TRUE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab