Learn R Programming

ggRandomForests (version 1.2.1)

partial_coplot_data: Cached plot.variable objects for examples, diagnostics and vignettes. Data sets storing rfsrc objects corresponding to training data according to the following naming convention:
  • partial_coplot_Boston- randomForestS[R]C for theBostonhousing data set (MASSpackage).

Description

Cached plot.variable objects for examples, diagnostics and vignettes. Data sets storing rfsrc objects corresponding to training data according to the following naming convention:
  • partial_coplot_Boston- randomForestS[R]C for theBostonhousing data set (MASSpackage).

Arguments

format

List of plot.variable objects

Details

Constructing random forests are computationally expensive. We cache rfsrc objects to improve the ggRandomForests examples, diagnostics and vignettes run times. (see rfsrc_cache_datasets to rebuild a complete set of these data sets.)

For each data set listed, we build a rfsrc. Tuning parameters used in each case are documented in the examples. Each data set is built with the rfsrc_cache_datasets with the randomForestSRC version listed in the ggRandomForests DESCRIPTION file.

  • partial_coplot_Boston- TheBostonhousing values in suburbs of Boston from theMASSpackage. Build a regression random forest for predicting medv (median home values) on 13 covariates and 506 observations.

References

#--------------------- randomForestSRC ---------------------

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.5.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

#--------------------- Boston data set ---------------------

Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley. Harrison, D., and D.L. Rubinfeld. 1978. "Hedonic Prices and the Demand for Clean Air." J. Environ. Economics and Management 5: 81-102.

#--------------------- pbc data set ---------------------

Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.

T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, New York. ISBN: 0-387-98784-3.

See Also

Boston plot.variable rfsrc_cache_datasets

Examples

Run this code
#---------------------------------------------------------------------
# MASS::Boston data - regression random forest 
#---------------------------------------------------------------------
data(Boston_rfsrc, package="ggRandomForests")

# Cut the codependent variable
rm_pts <- cut_distribution(rfsrc_Boston$xvar$rm, groups=6)
rm_grp <- cut(rfsrc_Boston$xvar$rm, breaks=rm_pts)

# plot.variable for lstat on subsets of rm (this will take some time.)
 partial_coplot_Boston <- gg_partial_coplot(rfsrc_Boston, xvar="lstat", 
                                            groups=rm_grp, 
                                            show.plots=FALSE)

Run the code above in your browser using DataLab