powered by
Regression measure defined as $$ \frac{1}{n} \sum_{i=1}^n \frac{\left( t_i - r_i \right)}{\left| t_i \right|}. $$ Good predictions score close to 0.
pbias(truth, response, na_value = NaN, ...)
(numeric()) True (observed) values. Must have the same length as response.
numeric()
response
(numeric()) Predicted response values. Must have the same length as truth.
truth
(numeric(1)) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
numeric(1)
NaN
(any) Additional arguments. Currently ignored.
any
Performance value as numeric(1).
Type: "regr"
"regr"
Range: \((-\infty, \infty)\)
Minimize: NA
NA
Required prediction: response
Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(), mse(), msle(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(), sse()
bias()
ktau()
mae()
mape()
maxae()
maxse()
medae()
medse()
mse()
msle()
rae()
rmse()
rmsle()
rrse()
rse()
rsq()
sae()
smape()
srho()
sse()
# NOT RUN { set.seed(1) truth = 1:10 response = truth + rnorm(10) pbias(truth, response) # }
Run the code above in your browser using DataLab