Learn R Programming

bio3d (version 2.3-0)

pca.tor: Principal Component Analysis

Description

Performs principal components analysis (PCA) on torsion angle data.

Usage

"pca"(data, ...)

Arguments

data
numeric matrix of torsion angles with a row per structure.
...
additional arguments passed to the method pca.xyz.

Value

Returns a list with the following components:

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.

See Also

torsion.xyz, plot.pca, plot.pca.loadings, pca.xyz

Examples

Run this code
##-- PCA on torsion data for multiple PDBs 
attach(kinesin)

gaps.pos <- gap.inspect(pdbs$xyz)
tor <- t(apply( pdbs$xyz[, gaps.pos$f.inds], 1, torsion.xyz, atm.inc=1))
pc.tor <- pca.tor(tor[,-c(1,233,234,235)])
#plot(pc.tor)
plot.pca.loadings(pc.tor)

detach(kinesin)

## Not run: 
# ##-- PCA on torsion data from an MD trajectory
# trj <- read.dcd( system.file("examples/hivp.dcd", package="bio3d") )
# tor <- t(apply(trj, 1, torsion.xyz, atm.inc=1))
# gaps <- gap.inspect(tor)
# pc.tor <- pca.tor(tor[,gaps$f.inds])
# plot.pca.loadings(pc.tor)
# ## End(Not run)

Run the code above in your browser using DataLab