Last chance! 50% off unlimited learning
Sale ends in
performs a Principal Component Analysis with respect to orthogonal instrumental variables.
pcaivortho(dudi, df, scannf = TRUE, nf = 2)
# S3 method for pcaivortho
summary(object, ...)
an object of class 'pcaivortho' sub-class of class dudi
an integer indicating the rank of the studied matrix
an integer indicating the number of kept axes
a vector with the all eigenvalues
a numeric vector with the row weigths (from dudi
)
a numeric vector with the column weigths (from dudi
)
a data frame with the dependant variables
a data frame with the explanatory variables
a data frame with the modified array (projected variables)
a data frame with the Pseudo Principal Axes (PPA)
a data frame with the Principal axis of dudi$tab
on PAP
a data frame with the projection of lines of dudi$tab
on PPA
a data frame dudi$ls
with the predicted values by X
a data frame with the Constraint Principal Components (CPC)
a data frame with the inner product between the CPC and Y
a data frame containing a summary
a duality diagram, object of class dudi
a data frame with the same rows
a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
an object of class pcaiv
further arguments passed to or from other methods
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Stéphane Dray stephane.dray@univ-lyon1.fr
Rao, C. R. (1964) The use and interpretation of principal component analysis in applied research. Sankhya, A 26, 329--359.
Sabatier, R., Lebreton J. D. and Chessel D. (1989) Principal component analysis with instrumental variables as a tool for modelling composition data. In R. Coppi and S. Bolasco, editors. Multiway data analysis, Elsevier Science Publishers B.V., North-Holland, 341--352
if (FALSE) {
data(avimedi)
cla <- avimedi$plan$reg:avimedi$plan$str
# simple ordination
coa1 <- dudi.coa(avimedi$fau, scan = FALSE, nf = 3)
# within region
w1 <- wca(coa1, avimedi$plan$reg, scan = FALSE)
# no region the same result
pcaivnonA <- pcaivortho(coa1, avimedi$plan$reg, scan = FALSE)
summary(pcaivnonA)
# region + strate
interAplusB <- pcaiv(coa1, avimedi$plan, scan = FALSE)
if(adegraphicsLoaded()) {
g1 <- s.class(coa1$li, cla, psub.text = "Sans contrainte", plot = FALSE)
g21 <- s.match(w1$li, w1$ls, plab.cex = 0, psub.text = "Intra Région", plot = FALSE)
g22 <- s.class(w1$li, cla, plot = FALSE)
g2 <- superpose(g21, g22)
g31 <- s.match(pcaivnonA$li, pcaivnonA$ls, plab.cex = 0, psub.tex = "Contrainte Non A",
plot = FALSE)
g32 <- s.class(pcaivnonA$li, cla, plot = FALSE)
g3 <- superpose(g31, g32)
g41 <- s.match(interAplusB$li, interAplusB$ls, plab.cex = 0, psub.text = "Contrainte A + B",
plot = FALSE)
g42 <- s.class(interAplusB$li, cla, plot = FALSE)
g4 <- superpose(g41, g42)
G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
par(mfrow = c(2, 2))
s.class(coa1$li, cla, sub = "Sans contrainte")
s.match(w1$li, w1$ls, clab = 0, sub = "Intra Région")
s.class(w1$li, cla, add.plot = TRUE)
s.match(pcaivnonA$li, pcaivnonA$ls, clab = 0, sub = "Contrainte Non A")
s.class(pcaivnonA$li, cla, add.plot = TRUE)
s.match(interAplusB$li, interAplusB$ls, clab = 0, sub = "Contrainte A + B")
s.class(interAplusB$li, cla, add.plot = TRUE)
par(mfrow = c(1,1))
}}
Run the code above in your browser using DataLab