Last chance! 50% off unlimited learning
Sale ends in
pcount(formula, data, K, mixture=c("P", "NB"), starts, method="BFGS",
control=list(), se=TRUE)
optim
.optim
.See unmarkedFrame
for a description of how to supply by creating
and unmarkedFrame.
This function fits the latent N-mixture model for point count data (Royle 2004, Kéry et al 2005).
The latent abundance distribution, $f(N | \mathbf{\theta})$ can be set as either a Poisson or a negative binomial random
variable, depending on the setting of the mixture
argument.
mixture = "P"
or mixture = "NB"
select the Poisson or
negative binomial distribution respectively. The mean of $N_i$ is
$\lambda_i$. If $N_i \sim NB$, then an
additional parameter, $\alpha$, describes dispersion (lower
$\alpha$ implies higher variance).
The detection process is modeled as binomial: $y_{ij} \sim Binomial(N_i, p_{ij})$.
Covariates of $\lambda_i$ use the log link and covariates of $p_{ij}$ use the logit link.
Kéry, M., Royle, J. A., and Schmid, H. (2005) Modeling Avaian Abundance from Replicated Counts Using Binomial Mixture Models. Ecological Applications 15(4), pp. 1450--1461.
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
(fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF))
(fm.mallard.nb <- pcount(~ date + I(date^2) ~ length + elev, mixture = "NB", mallardUMF))
Run the code above in your browser using DataLab