pelexp
exponential
pelgam
gamma
pelgev
generalized extreme-value
pelglo
generalized logistic
pelgpa
generalized Pareto
pelgno
generalized normal (lognormal)
pelgum
Gumbel (extreme-value type I)
pelkap
kappa
pelnor
normal
pelpe3
Pearson type III
pelwak
Wakeby
}pelexp(lmom)
pelgam(lmom)
pelgev(lmom)
pelglo(lmom)
pelgno(lmom)
pelgpa(lmom, bound = NULL)
pelgum(lmom)
pelkap(lmom)
pelnor(lmom)
pelpe3(lmom)
pelwak(lmom, bound = NULL, verbose = FALSE)
NULL
(the default),
the lower bound will be estimated by the routine.pelp
for parameter estimation of a general distribution
specified by its cumulative distribution function or quantile function.
lmrexp
, etc., to compute the $L$-moments
of a distribution given its parameters.
For individual distributions, see their cumulative distribution functions:
cdfexp
exponential
cdfgam
gamma
cdfgev
generalized extreme-value
cdfglo
generalized logistic
cdfgpa
generalized Pareto
cdfgno
generalized normal (lognormal)
cdfgum
Gumbel (extreme-value type I)
cdfkap
kappa
cdfnor
normal
cdfpe3
Pearson type III
cdfwak
Wakeby
}# Sample L-moments of Ozone from the airquality data
data(airquality)
lmom <- samlmu(airquality$Ozone)
# Fit a GEV distribution
pelgev(lmom)
Run the code above in your browser using DataLab