# EXAMPLE 1
# calculate 95th percentile and exact CLs for Example data
# Appendix Mulhausen and Damiano (1998)
data(aihand)
x <- aihand$x ; det <- rep(1,length(x))
aiha <- data.frame(x,det) # complete data
unlist(percentile.exact(x,gam=0.95,p=0.95) )[1:5] # exact CLs
unlist(percentile.ml(aiha,gam=0.95,p=0.95)) # ML CLs
# EXAMPLE 2
# Ignacio and Bullock (2006) Mulhausen and Damiano (1998)
# Calculate TABLE VII.3 (page 272) Factor for One-Sided Tolerance
# Limits for Normal Distribution (Abridged Version)
# Same as Table III Burrows(1963) Panel 3 Page 138
nn <- c(seq(3,25),seq(30,50,5))
pv <-c(0.75,0.9,0.95,0.99,0.999)
tab <- matrix(0,length(nn),length(pv))
for( k in (1:length(nn) ) ){
xx <- seq(1,nn[k])
for(j in (1:length(pv))) {
tab[k,j ]<- percentile.exact(xx,pv[j],gam=0.95,FALSE)$Ku
}}
dimnames(tab)<-(list(nn,pv)) ; rm(nn,pv,xx)
round(tab,3)
#
# EXAMPLE 3
# Calculate TABLE I One Sided Tolerance Factor K'
# Tuggle(1982) Page 339 (Abridged Version)
nn <- c(seq(3,20),50,50000000)
pv <-c(0.9,0.95,0.99)
tab <- matrix(0,length(nn),length(pv))
for( k in (1:length(nn) ) ){
xx <- seq(1,nn[k])
for(j in (1:length(pv))) {
tab[k,j ]<- percentile.exact(xx,pv[j],gam=0.95,FALSE)$Kl
}}
dimnames(tab)<-(list(nn,pv)) ; rm(nn,pv,xx)
round(tab,3)
Run the code above in your browser using DataLab