Learn R Programming

pencal (version 1.0.2)

performance_prc: Predictive performance of the PRC-LMM and PRC-MLPMM models

Description

This function computes the naive and optimism-corrected measures of performance (C index and time-dependent AUC) for the PRC models proposed in Signorelli et al. (2021). The optimism correction is computed based on a cluster bootstrap optimism correction procedure (CBOCP)

Usage

performance_prc(step2, step3, times = 1, n.cores = 1, verbose = TRUE)

Arguments

step2

the output of either summarize_lmms or summarize_mlpmms (step 2 of the estimation of PRC)

step3

the output of fit_prclmm or fit_prcmlpmm (step 3 of PRC)

times

numeric vector with the time points at which to estimate the time-dependent AUC

n.cores

number of cores to use to parallelize the computation of the CBOCP procedure. If ncores = 1 (default), no parallelization is done. Pro tip: you can use parallel::detectCores() to check how many cores are available on your computer

verbose

if TRUE (default and recommended value), information on the ongoing computations is printed in the console

Value

A list containing the following objects:

  • call: the function call;

  • concordance: a data frame with the naive and optimism-corrected estimates of the concordance (C) index;

  • tdAUC: a data frame with the naive and optimism-corrected estimates of the time-dependent AUC at the desired time points.

References

Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C, The MARK-MD Consortium, Tsonaka, R. (2021). Penalized regression calibration: a method for the prediction of survival outcomes using complex longitudinal and high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196. DOI: 10.1002/sim.9178

See Also

for the PRC-LMM model: fit_lmms (step 1), summarize_lmms (step 2) and fit_prclmm (step 3); for the PRC-MLPMM model: fit_mlpmms (step 1), summarize_mlpmms (step 2) and fit_prcmlpmm (step 3).

Examples

Run this code
# NOT RUN {
data(fitted_prclmm)

parallelize = FALSE
# IMPORTANT: set parallelize = TRUE to speed computations up!
if (!parallelize) n.cores = 1
if (parallelize) {
   # identify number of available cores on your machine
   n.cores = parallel::detectCores()
   if (is.na(n.cores)) n.cores = 1
}
                   
# compute the performance measures
perf = performance_prc(fitted_prclmm$step2, fitted_prclmm$step3, 
          times = c(0.5, 1, 1.5, 2), n.cores = n.cores)

# concordance index:
perf$concordance
# time-dependent AUC:
perf$tdAUC
# }

Run the code above in your browser using DataLab