Learn R Programming

eRm (version 0.9-2)

person.parameter: Estimation of Person Parameters

Description

Maximum likelihood estimation of the person parameters with spline interpolation for non-observed and 0/full responses. Extraction of information criteria such as AIC, BIC, and cAIC based on unconditional log-likelihood.

Usage

## S3 method for class 'eRm':
person.parameter(object)
## S3 method for class 'ppar':
summary(object, ...)
## S3 method for class 'ppar':
print(x, ...)
## S3 method for class 'ppar':
summary(object, ...)
## S3 method for class 'ppar':
plot(x, xlab = "Person Raw Scores", ylab = "Person Parameters (Theta)", main = NULL, ...)
## S3 method for class 'ppar':
logLik(object, ...)
## S3 method for class 'ppar':
IC(object)
## S3 method for class 'ppar':
confint(object, parm, level = 0.95, ...)

Arguments

object
Object of class eRm in person.parameter and object of class ppar in IC.
x
Object of class ppar.
xlab
Label of the x-axis.
ylab
Label of the y-axis.
main
Title of the plot.
...
Further arguments to be passed to or from other methods. They are ignored in this function.
parm
Parameter specification (ignored).
level
Alpha-level.

Value

  • The function person.parameter returns an object of class ppar containing:
  • loglikConditional log-likelihood value.
  • nparNumber of parameters.
  • niterNumber of iterations.
  • thetaparPerson parameter estimates.
  • se.thetaStandard errors of the person parameters.
  • hessianHessian matrix.
  • The function IC returns an object of class ICr containing:
  • j.loglikUnconditional (joint) log-likelihood value.
  • AICAIC criterion.
  • BICBIC criterion.
  • cAICConsistent AIC criterion.

Details

If the data set contains missing values, person parameters are estimated for each missing value subgroup.

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer. Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20. Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.

See Also

itemfit.ppar,personfit.ppar

Examples

Run this code
#Person parameter estimation of a rating scale model
data(rsmdat)
res <- RSM(rsmdat)
pres <- person.parameter(res)
print(pres)
summary(pres)
plot(pres)

#Person parameter estimation for a Rasch model with missing values
data(raschdat2)
res <- RM(raschdat2, se = FALSE)           #Rasch model without standard errors
pres <- person.parameter(res)
print(pres)                                #person parameters
summary(pres)
logLik(pres)                               #conditional log-lik value

#Extraction of IC's
IC(pres)

Run the code above in your browser using DataLab