#############################################################################
# EXAMPLE 1: Person fit Reading Data
#############################################################################
data(data.read)
dat <- data.read
# estimate Rasch model
mod <- rasch.mml2( dat )
# WLE
wle1 <- wle.rasch( dat,b=mod$item$b )$theta
b <- mod$item$b # item difficulty
# evaluate person fit
pf1 <- personfit.stat( dat = dat , abil=wle1 , b=b)
## Not run:
# # dimensional analysis of person fit statistics
# x0 <- stats::na.omit(pf1[ , -c(1:3) ] )
# stats::factanal( x=x0 , factors=2 , rotation="promax" )
# ## Loadings:
# ## Factor1 Factor2
# ## caution 0.914
# ## depend 0.293 0.750
# ## ECI1 0.869 0.160
# ## ECI2 0.869 0.162
# ## ECI3 1.011
# ## ECI4 1.159 -0.269
# ## ECI5 1.012
# ## ECI6 0.879 0.130
# ## l0 0.409 -1.255
# ## lz -0.504 -0.529
# ## outfit 0.297 0.702
# ## infit 0.362 0.695
# ## rpbis -1.014
# ## rpbis.itemdiff 1.032
# ## U3 0.735 0.309
# ##
# ## Factor Correlations:
# ## Factor1 Factor2
# ## Factor1 1.000 -0.727
# ## Factor2 -0.727 1.000
# ##
# ## End(Not run)
Run the code above in your browser using DataLab