Learn R Programming

sirt (version 1.5-0)

personfit.stat: Person Fit Statistics for the Rasch Model

Description

This function collects some person fit statistics for the Rasch model (Karabatsos, 2003; Meijer & Sijtsma, 2001).

Usage

personfit.stat(dat, abil, b)

Arguments

dat
An $N \times I$ data frame of dichotomous item responses
abil
An ability estimate, e.g. the WLE
b
Estimated item difficulty

Value

  • A data frame with following columns (see Meijer & Sijtsma 2001 for a review of different person fit statistics):
  • caseCase index
  • abilAbility estimate abil
  • meanPerson mean of correctly solved items
  • cautionCaution index
  • dependDependability index
  • ECI1$ECI1$
  • ECI2$ECI2$
  • ECI3$ECI3$
  • ECI4$ECI4$
  • ECI5$ECI5$
  • ECI6$ECI6$
  • l0Fit statistic $l_0$
  • lzFit statistic $l_z$
  • outfitPerson outfit statistic
  • infitPerson infit statistic
  • rpbisPoint biserial correlation of item responses and item $p$ values
  • rpbis.itemdiffPoint biserial correlation of item responses and item difficulties b
  • U3Fit statistic $U_3$

References

Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16, 277-298. Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.

See Also

See pcm.fit for person fit in the partial credit model. See the irtProb and PerFit packages for person fit statistics and person response curves and functions included in other packages: personfit (mirt), personfit (eRm) and person.fit (ltm).

Examples

Run this code
#############################################################################
# EXAMPLE 1: Person fit Reading Data
#############################################################################

data(data.read)
dat <- data.read

# estimate Rasch model
mod <- rasch.mml2( dat )
# WLE
wle1 <- wle.rasch( dat,b=mod$item$b )$theta
b <- mod$item$b # item difficulty

# evaluate person fit
pf1 <- personfit.stat( dat = dat , abil=wle1 , b=b)

# dimensional analysis of person fit statistics
x0 <- na.omit(pf1[ , -c(1:3) ] )
factanal( x=x0 , factors=2 , rotation="promax" )
  ## Loadings:
  ##                Factor1 Factor2
  ## caution         0.914         
  ## depend          0.293   0.750 
  ## ECI1            0.869   0.160 
  ## ECI2            0.869   0.162 
  ## ECI3            1.011         
  ## ECI4            1.159  -0.269 
  ## ECI5            1.012         
  ## ECI6            0.879   0.130 
  ## l0              0.409  -1.255 
  ## lz             -0.504  -0.529 
  ## outfit          0.297   0.702 
  ## infit           0.362   0.695 
  ## rpbis          -1.014         
  ## rpbis.itemdiff  1.032         
  ## U3              0.735   0.309 
  ## 
  ## Factor Correlations:
  ##         Factor1 Factor2
  ## Factor1   1.000  -0.727
  ## Factor2  -0.727   1.000
  ##

Run the code above in your browser using DataLab