pgam(formula, dataset, omega = 0.8, beta = 0.1, offset = 1, digits = getOption("digits"),
maxit = 100, eps = 1e-06, lfn.scale=1, control = list(), optim.method = "L-BFGS-B",
bkf.eps = 0.001, bkf.maxit = 100, se.estimation = "numerical", verbose = TRUE)
pgam.parser
for detailscontrol
in optim
. Value must be positive to ensure maximizationoptim
. See its help for detailsoptim
. Different methods can lead to different results, so the user must attempt to the trade off between speed and robustness. For example, BFGS
is faster but sensinumerical
numerical standard error of parameters are returned. If analytical
then analytical extraction of the standard errors is performed. By setting it to none
standard error estimation is avoidedTRUE
information during estimation process is printed outpgam
.Specific information can be obtained on functions help.
This algorithm fits fully parametric Poisson-Gamma model also.
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para S�ries Temporais de Dados de Contagem - Teoria e Aplica��es. 10a ESTE - Escola de S�ries Temporais e Econometria
Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London
predict.pgam
, pgam.parser
, residuals.pgam
, backfitting
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")
summary(m)
Run the code above in your browser using DataLab