Learn R Programming

pgam (version 0.4.1)

pgam: Poisson-Gamma Additive Models

Description

Fit Poisson-Gamma Additive Models using the roughness penalty approach

Usage

pgam(formula, dataset, omega = 0.8, beta = 0.1, offset = 1, digits = getOption("digits"),
maxit = 100, eps = 1e-06, lfn.scale=1, control = list(), optim.method = "L-BFGS-B", 
bkf.eps = 0.001, bkf.maxit = 100, se.estimation = "numerical", verbose = TRUE)

Arguments

formula
a model formula. See pgam.parser for details
dataset
a data set in the environment search path. Missing data is temporarily not handled
omega
initial value for the discount factor
beta
vector of initial values for covariates coefficients. If a sigle value is supplied it is replicated to fill in the whole vector
offset
default is $1$. Other value can be supplied here
digits
number of decimal places for printing information out
maxit
convergence control iterations
eps
convergence control criterion
lfn.scale
scales the likelihood function and is passed to control in optim. Value must be positive to ensure maximization
control
convergence control of optim. See its help for details
optim.method
optimization method passed to optim. Different methods can lead to different results, so the user must attempt to the trade off between speed and robustness. For example, BFGS is faster but sensi
bkf.eps
convergence control criterion for the backfitting algorithm
bkf.maxit
convergence control iterations for the backfitting algorithm
se.estimation
if numerical numerical standard error of parameters are returned. If analytical then analytical extraction of the standard errors is performed. By setting it to none standard error estimation is avoided
verbose
if TRUE information during estimation process is printed out

Value

  • List containing an object of class pgam.

Details

There are a lot of details to be written. It will be very soon.

Specific information can be obtained on functions help.

This algorithm fits fully parametric Poisson-Gamma model also.

References

Junger, W. L. (2004) Modelo Poisson-Gama Semi-Param�trico: Uma Abordagem de Penaliza��o por Rugosidade. MSc Thesis. Rio de Janeiro, PUC-Rio, Departamento de Engenharia El�trica

Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417

Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para S�ries Temporais de Dados de Contagem - Teoria e Aplica��es. 10a ESTE - Escola de S�ries Temporais e Econometria

Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London

See Also

predict.pgam, pgam.parser, residuals.pgam, backfitting

Examples

Run this code
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")

summary(m)

Run the code above in your browser using DataLab