Learn Python and AI for free! One week only. No credit card needed.
Ends in:
Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with gamma for bulk
distribution upto the threshold and conditional GPD above threshold. The parameters
are the gamma shape gshape
and scale gscale
, threshold u
GPD scale sigmau
and shape xi
and tail fraction phiu
.
dgammagpd(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE, log = FALSE)pgammagpd(q, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE,
lower.tail = TRUE)
qgammagpd(p, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE,
lower.tail = TRUE)
rgammagpd(n = 1, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE)
quantiles
gamma shape (positive)
gamma scale (positive)
threshold
scale parameter (positive)
shape parameter
probability of being above threshold TRUE
logical, if TRUE then log density
quantiles
logical, if FALSE then upper tail probabilities
cumulative probabilities
sample size (positive integer)
dgammagpd
gives the density,
pgammagpd
gives the cumulative distribution function,
qgammagpd
gives the quantile function and
rgammagpd
gives a random sample.
Extreme value mixture model combining gamma distribution for the bulk below the threshold and GPD for upper tail.
The user can pre-specify phiu
permitting a parameterised value for the tail fraction phiu=TRUE
the tail fraction is estimated as the tail fraction from the
gamma bulk model.
The cumulative distribution function with tail fraction phiu=TRUE
), upto the
threshold pgamma(x, gshape, 1/gscale)
and
pgpd(x, u, sigmau, xi)
) respectively.
The cumulative distribution function for pre-specified
The gamma is defined on the non-negative reals, so the threshold must be positive.
Though behaviour at zero depends on the shape (
where
See gpd
for details of GPD upper tail component and
dgamma
for details of gamma bulk component.
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling. 4(3), 227-244.
Other mgamma fmgamma
gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnormgpd
mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon
,
fgammagpd
, fmgammagpdcon
,
fmgammagpd
, fmgamma
,
gammagpdcon
, mgammagpdcon
,
mgammagpd
, mgamma
# NOT RUN {
set.seed(1)
par(mfrow = c(2, 2))
x = rgammagpd(1000, gshape = 2)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpd(xx, gshape = 2))
# three tail behaviours
plot(xx, pgammagpd(xx, gshape = 2), type = "l")
lines(xx, pgammagpd(xx, gshape = 2, xi = 0.3), col = "red")
lines(xx, pgammagpd(xx, gshape = 2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
x = rgammagpd(1000, gshape = 2, u = 3, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpd(xx, gshape = 2, u = 3, phiu = 0.2))
plot(xx, dgammagpd(xx, gshape = 2, u = 3, xi=0, phiu = 0.2), type = "l")
lines(xx, dgammagpd(xx, gshape = 2, u = 3, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dgammagpd(xx, gshape = 2, u = 3, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab