Plots methods for models, excluding distribution sets.
####################################
#discrete kernel smoothing models
#(call plot_dpd)
####################################
# S3 method for dksuv
ph.plotf(sf, data=FALSE, …)####################################
#continuous kernel smoothing models
#(call plot_cpd, plot_cpd_bv or plot_cpd_tv)
####################################
# S3 method for cksuv
ph.plotf(sf, data=FALSE, …)
# S3 method for cksmv
ph.plotf(sf, in3d=FALSE, data=FALSE, …)
# S3 method for cksc
ph.plotf(sf, …)
# S3 method for cksmvc
ph.plotf(sf, in3d=FALSE, data=FALSE, …)
####################################
#categorical models
#(call plot_dpd)
####################################
# S3 method for catuv
ph.plotf(sf, …)
# S3 method for catc
ph.plotf(sf, …)
####################################
#mixed input
####################################
# S3 method for gmix
ph.plotf(sf, …)
# S3 method for xmix
ph.plotf(sf, …)
####################################
#empirical-like models
#(call plot_cpd)
####################################
# S3 method for eluv
ph.plotf(sf, data=FALSE, …)
####################################
#all continuous univariate models
####################################
# S3 method for cpduv
ph.linesf(sf, …, xlim, n=200)
A probability distribution. Refer to the references and see also sections.
Logical, if true, create a 3D plot. Ignored, if sf has three or more random variables.
If true, include a subpanel with data bars/points. Ignored, if x is a quantile function, a conditional distribution, or has three or more random variables
Length two numeric vector, giving plot range. Currently, ignored for quantile functions.
Integer, number of points.
Other arguments for plot_dpd, plot_cpd, plot_cpd_bv and plot_cpd_tv.
Refer to the vignette for more information.
Note that these methods call the functions plot_dpd, plot_cpd, plot_cpd_bv and plot_cpd_tv. Please refer to these functions for more information.
Refer to the vignette for an overview, references and better examples.
Succinct Constructors Discrete Kernel Smoothing, Continuous Kernel Smoothing Categorical Distributions, Empirical-Like Distributions
# NOT RUN {
prep.ph.data ()
dfh <- pmfuv.dks (traffic.bins, traffic.freq)
cfh <- pdfuv.cks (height)
cfh2 <- pdfmv.cks (trees2 [,-2])
plot (dfh, TRUE)
plot (cfh, TRUE)
plot (cfh2,, TRUE)
# }
Run the code above in your browser using DataLab