y <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1), rnorm(100,
0, 1))Pos <- sample(1:10, 230, replace=TRUE)
Pos <- cumsum(Pos)
Chrom <- rep(1:23, rep(10, 23))
jp <- list(sigma.tau.mu=rep(0.5, 4), sigma.tau.sigma.2=rep(0.3, 4),
sigma.tau.beta=rep(0.7, 4), tau.split.mu=0.5)
fit.Chrom <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="Chrom",
burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
fit.Genom <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="Genome", burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
fit.none <- RJaCGH(y=y, Pos=Pos, Chrom=NULL, model="None",
burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
plot(fit.Chrom)
plot(fit.Chrom[[1]])
plot(fit.Genom)
plot(fit.none)
y2 <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1),
rnorm(100, 0, 1))
ya <- cbind(y, y2)
fit.Chrom.array <- RJaCGH(y=ya, Pos=Pos, Chrom=Chrom, model="Chrom",
burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
fit.Genom.array <- RJaCGH(y=ya, Pos=Pos, Chrom=Chrom, model="Genome", burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
fit.none.array <- RJaCGH(y=ya, Pos=Pos, Chrom=NULL, model="None",
burnin=100, TOT=1000, jump.parameters=jp, k.max=4)
plot(fit.Chrom.array)
plot(fit.Genom.array)
plot(fit.none.array)
Run the code above in your browser using DataLab